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5“ SECTION 1
K T INTRODUCTION

1.1 PASSIVE ACOUSTIC AIRBORNE ASW

‘-‘vv
‘4L

Y _‘;-:j i - The airborne ASW tracking problem is becoming progressively more diffi-
’:-_ \. ]
o 3 cult every year. The continued efforts of our adversaries toward quieter,

faster assets with longer ranged weapons imply the need for more powerful

L d
S

. localization and tracking systems able to extract maximum information from

lower signal strengths and to obtain fire control solutions as quickly as

P
® <>
oy 7.7

possible. Current systems work by extracting bearing and Doppler information

G

;-E_ I from narrow band signals and then using this information in Extended Kalman
:j . filter tracking algorithms. To operate successfully such systems require a
¥ ‘ ﬁ stable narrow band line and relatively high signal-to-noise ratio (narrow band
S ::S Ei signal strength to background noise strength). Unfortunately, these require-
‘ ’ ments are becoming increasingly more difficult to satisfy as targets become

J
% .Q quieter.

:'%: r: Several new sensors planned for the future (e.g., various types of array

'T.“_ & buoys) will help prolong the usefulness of current tracking systems, but it

] ; " is clear that within very few years new tracking systems will be required to

.»; ; exploit many different types of measurements and to operate at lower SNR

, i; levels than possible with current systems. ‘\f"“ i
:: . The key mathematical problem of passive Aéw localization and tracking

$S: :" is the estimation of the state of time-varying stochastic processes given

A

'l':' ﬁ
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)

nonlinear measurements with low SNR. A theoretical framework does exist for

Fya

such problems, at least at the abstract level, in the curreut theory of non-

linear estimation. Unfortunately, this theory has very little to say at the

practical, computational level about nonlinear problems in general. Neverthe-

by 'y

less, useful theoretical results are possible for nonlinear filtering problems

if additional mathematical structure is present, and we believe that the pas-

2 |

sive tracking problem of airborne ASW does have significant special structure

to exploit. The research discussed here identifies one type of special struc-

5572

ture (time-scale perturbation) and shows how to exploit it to design improved

passive tracking systems.

LT

1.2 CONVENTIONAL VERSUS INTEGRATED SYSTEM ARCHITECTURE

5>

Current passive acoustic tracking systems work by extracting target

TR

parameters (such as time delay or Doppler shift of a narrow band emission)

from a raw signal and then processing those parameters to obtain estimates of

target parameters of interest (position and velocity). These two types of

;h processing are referred to as signal processing and tracking. Conventional
system designs assume that signal processing and tracking can be performed

g; sequentially (see Fig. 1-1 from [l1]). The front-end signal processor is usu-

ally designed assuming that target parameters are constant over time; the

back-end tracker is designed assuming that the parameter estimates output from

the signal processor are direct measurements of the true parameter values with

LA

the addition of uncorrelated measurement noise.

[y These design assumptions are based on the physical nature of observation
N and target processes: that is, a slowly varying target process modulates a
=

rapidly varying observation process. Thus, the coaventional system design

S W

T Ta e o AN CARE SRR
A A S N A i ad il



X § ALPHATECH, INC.
s |
;ﬁ' {: RECEIVING TRANSDUCER ARRAY
S
R
et a SIGNAL CONDITIONER
:':!'.i
R o L ‘ l
|}‘ ' "
SO ANALOG
3 b
i ¢ v v
L4
ol DIGITAL CONVERSION
R v vy
vq.- IO FRONT END
b
sy _; v DIGITAL BEAMFORMER PROCESSING
2% DIGITAL ‘ ¢ L 4
- .
YA PROCESSING
] - DIGITAL BANDSHIFTING
el AND FILTERING
b.’ A
R
o DETECTION/ESTIMATION v
SO
i: STATISTICS PROCESSOR BACK END
l PROCESSING
OPERATOR DISPLAY
OPERATOR INTERACTION
OPERATOR DECISION
R-5450
Figure 1-1. Generic Passive Sonar Processing System
(Knight, Pridham, Kay, 1981)
inverts the physical model -- i.e., a fast signal processor modulates a slow

tracking filter. However, these design assumptions are only approximations

and the segmented system is only an approximation of the optimal processor for
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extracting target tracks from the raw acoustic sensor data. In an ideal world
with unlimited computational and data transmission resources, one would design
an optimal, totally integrated tracking system that takes in raw hydrophone

signals from every sonobuoy and outputs target position and velocity estimates

(Fig. 1-2).

HYDROPHONE TARGET POSITIONS
SIGNALS INTEGRATED AND VELOCITIES
i PROCESSOR :

R-1249

Figure 1-2. Optimal, Integrated Processing System Architecture

We know what the optimal design is -- it is the implementation of Bayes
rule. One way to realize this optimal algorithm is to discretize the
continuous-valued variables and treat the problem as a finite state Markov
estimation problem. As the discretization becomes more refined, this approx-
imation comes closer to the optimal Bayesian algorithm. Unfortunately, the
computational complexity also increases so rapidly that it quickly overwhelms
any imaginable processor for all but problems of small dimensions (at most 2
or 3). Numerical and processor work on this problem is still advancing [2]
but it is clear that this completely optimal, totally integrated approach will
have to be usel in conjunction with methods that decompose large dimensional
problems into a collection of small dimensional problems which can be solved
separately and then recombined to obtain a tractable solution to the overall
high dimensional problem.

Such decompositions define corresponding system architectures, i.e., a

collection of components (which solve the small dimensional subproblems)
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together with the inputs and outputs of each component (and thus, connections

between components). For example, Fig. 1-3 shows a typical passive tracking

A A 4y ] (A

system architecture with two components, a front—end signal processor that

-
.
'» N

;*: estimates bearing and frequency lines from raw measurements and a back-end

.is ;g tracking algorithm that estimates position and velocity from bearing and fre-
. quency inputs. Figure 1-4 shows another system architecture. It adds a feed-
s& . back connection from the back-end tracker to the front—end signal processor.
i' gg This feedback can enhance the signal processing by providing estimates of

g expected Doppler shift and bearing to the front end. However, if the tracker
5 ;? back end is producing poor position and velocity estimates, this feedback may
;' . in fact worsen the performance of the front-end signal processor. How does the
! 55 system of Fig. 1-4 decide when to switch feedback on or off? More generally,
.; .- how does one decide which architecture is the best one to use in a particular
Qé - situation? Are frequency and bearing outputs the best ones to provide to the

back-end tracker in Fig. 1-4? 1If the architecture of Fig. 1-4 is used, what

1
r

)
iy is the best feedback information that the back—end tracker can provide the
$o '
o t‘ front—-end signal processor in order to tell the front end when it should and
P
Y
i g; when 1t should not use this information to enhance its signal processing? The
"
Lol objective of this research is to show that we can apply stochastic perturba-
.
?: :b tion theory to answer such questions as these in a precise, systematic manner.
#I
N
]
S ? HYDROPHONE RECEIVED FREQUENCIES TARGET POSITIONS
o SIGNALS AND BEARINGS AND VELOCITIES
; > FRONT-END . BACK-END >
O PROCESSOR PROCESSOR
d R-1248
N -
s
WO,
:“ Figure 1-3. Suboptimal, Segmented Processing System Architecture
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PREDICTED DOPPLER SHIFT
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¥
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:g . Figure 1-4. Segmented Processing System Architecture with Feedback

o 4

o )\'\})

v 1.3 FILTERING PROBLEMS WITH TIME SCALES

:'.' f":’: Our objective is to employ some systematic mathematical methods to iden-

tify architectures (that is, components, inputs, and outputs) which perform

- IL close to optimal, totally integrated systems. Our approach to doing this is

:: ::, to formulate the complete tracking problem as a mathematical estimation prob-

(s Y

E lem, identify perturbation parameters in the mathematical model, use methods

w B of stochastic perturbation theory to decompose the estimation problem, and

: interpret the decomposition in terms of a corresponding system architecture.
v, .

" \j The specific perturbation parameter we will exploit 1in this work 1s the

g E ratio of the signal time constant to the target time constant which is often

> - small. The conventional segmented signal processing and tracking system is an

:‘: K approximation based on this time-scale separation. The goal of our research

-" ‘ is to obtain time-scale approximations of optimal filters systematically and

:. ;-f- rigorously from a mathematical analysis of the equations modeling the target

4
- and signal.
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;3‘ & 1.4 SIGNIFICANCE OF PERTURBATION METHOD
:E:o“ We have mentioned only one kind of perturbation (namely time-scale per-
’;;“ t turbation) so far, but we believe that several other useful perturbations can
\:- o be identified in the mathematical models used in passive acoustic tracking.
S ::' In this subsection we will discuss the significance of developing architecture
“-") % decomposition methods based on stochastic perturbation theory.

:: Y
; o 1.4.1 Computation Reduction

>, R

’? X As we noted at the beginning of this section, the purpose of this method
;' :-j is to decompose high dimensional problems into Lractable lower dimensional

= oo
’SE ) problems. What is significant is that perturbation theory provides a system~
f&ﬂ 5 atic, general way of doing this. Moreover, this approach provides decomposi-
:;2 .- tions which are small perturbations of the optimal, totally integrated system.
3%5 :? How much performance loss results depends on the size of the perturbation
. "r parameter. Although quantitative performance analysis is far from easy even
s' in these cases, the method does provide an approach to identifying decompo-
.' E‘;_ sitions which promise minimal loss of performance.
e
\.') [Q; 1.4.2 Hierarchies of Architectures
?iﬂ . The perturbation method also naturally provides hierarchical families of
‘ :3 architectures in terms of asymptotic expansions of optimal solutions. That
. ~ is, one can identify the simplest architectures resulting from assuming that
“'.t; - the perturbation parameters are negligible, but also one can identify more
'.-3 2 complex architectures which may also have better performance when the perbur-

bation parameter is not negligible. For example, it seems likely that the

architecture shown in Fig. 1-3 is a zero-order approximation of the optimal
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is system when the perturbation parameter is negligible. We also conjecture that

" some variation of the architecture shown in Fig. 1-4 is a first-order approx-

E imation of the optimal system. What we do not know is what the exact feedback
information should be in Fig. 1-4, but we expect stochastic perturbation

S? theory to give us the precise answer.

Pg 1.4.3 Nonintuitive Architectures

In many problems experienced, intuition suffices to determine zero-order
and sometimes high order perturbation approximations. Perturbation theory is
much more complicated for stochastic problems, and we believe that a system-—
atic, mathematical method such as we propose will have a tremendous advantage
ﬁﬁ over unaided intuition. Reference [3] gives some examples of nonintuitive

stochastic perturbation results.

o
l1.4.4 Reduction to Component Design
i? The object of architecture decomposition is to reduce the problem of
., designing a tracking system to that of designing simpler components which are
<.
he connected together as specified by the architecture. Architecture decomposi-
52 tion will specify these components in terms of an estimation subproblem that
the component needs to solve. The solution of the subproblem would generally
E: be determined by other methods, and in many cases it may happen that methods

already exist for solving these subproblems. Thus, the architecture decom-

position shows how to utilize these existing results in a unified tracking

A&

system to solve the problem at hand. For example, architecture decomposition
would indicate that the narrowband problem above has the architecture of

;} Fig. 1-3. This architecture would specify the frontend only as something

A}
v

e
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WAl |

,‘" :; which tries to estimate constant frequency and bearing from hydrophone data.
AN ]

".: The system designer is then free to note that there already exist various
"

C g solutions to that problem (e.g., maximum likelihood estimators or maximum
L

i

',.::'. ) entropy methods) and would substitute the appropriate module in his system.
e N

f:;::" &:’ If the architecture iandicates that this subproblem is particularly difficult
1e';'i‘.i

v ) (for example, the architecture analysis might indicate that the subproblem
Y E

:'::." " involves a low signal-to-noise ratio), then the system designer would know he

should search for a more sophisticated front end.

=2
L)

S Y] 1.5 OVERIVEW OF REPORT
Ry
L *
v z Section 2 of this report describes nonlinear filtering models for passive
D)
0 Lo
5::’ & acoustic tracking which we will use as a basis for our study of time-scale
'
approximations and filter architectures. Section 3 briefly reviews the funda-
SO
‘f,:.:‘;: mentals of stochastic estimation for dynamical systems in terms of stochastic
s
SN r: differential equations. In Section 4 we review previous work on problems sim-
4
el ilar to ours in the areas of singular estimation and control, and singularly
ot
.‘:':: f_{ perturbed estimation and control. Section 5 then contains a discussion of
N AN
e
WG existing techniques for the type of perturbation problem arising in passive
J

acoustic tracking; this section discusses several filter architectures that

e ]

h Y
LY

are implied by the different techniques reviewed in Se=tion 4. One of the

e ~ conclusions of this section is that there are essentially no existing results
zi:: :- for the class of models that includes those arising in passive ASW tracking.
:33 ) The remainder of the report then deals with the development of such results.
:- E; In Section 6 we introduce two relatively simple nonlinear filtering problems
.‘ %y possessing the same qualitative features found in passive ASW problems. We

:§ “'3 also motivate and define a number of approximate solutions to these problems
)

i
| - 1.2
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5? and discuss their architectural implications. Section 7 contains the theo-
- retical analysis of one of these approximations that provides a precise rela-~
l' tionship between process time scales and measurement quality. The extensive
. simulations in Section 8 not only support the result of Section 7 but also
.
:5 lead to a number of additional conclusions including several concernirg the
structure and asymptotic properties of front-end/back-end architectures.
o

The body of the report then concludes with a brief review and discussion in

Section 9. Appendix A, B, and C contain technical derivations pertinent to

=t

Sections 2, 3, and 6, respectively.
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SECTION 2

PASSIVE ACOUSTIC TRACKING MODELS

2.1 INTRODUCTION

This section will describe a wodel for passive acoustic tracking prob-
lems, which has been used for passive tracking algorithms in the past and is
useful for applying the nonlinear filtering approach we are taking. The basic
simplifying assumption is that acoustic signals travel in straight lines from
transmitter to receiver at a constant speed. From this assumption, we develop
simple models for source and seunsor motion effects, source aspect angle depen-
dence, sensor directivity, and attentuation. To be sure, sound propagation in
the ocean is much more complex than the model of it presented here [4]. But
including a more realistic model of sound propagation, although possible, is
well beyond the scope and needs of this research. The model presented here
has been sufficient to guide and test our research into new methods of com-
bined s’gnal processing and tracking which may prove useful for practical

passive acoustic tracking.

2.2 TIME DELAY, DOPPLER EFFECT, AND SQURCE-SENSOR MOTION

Define the following notation (see Fig. 2-1):

x7(t) = Transmitter location at time t;
xg(t) = Receiver location at time t;
yr(t) = Signal transmitted at time t;

yr(t) = Signal received at time t.

11
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Define t(t) implicitly as

1(t) = Delay in signal received at time t;
- (2-1)
1
= — |xp(t-t(t)) - xp(v)| .
The basic relationship between yp and yp in this case is
yr(t) = yr(t-t(t)) - (2-2)

The time derivative ; of the time delay t and the Doppler effect factor 1-;

are of particular interest. These are given by the following equations

obtained by implicit differentation of Eq. 2-1:

<xp(t-1) = xp(t),xp(t-1) = XR(£)>

(2-3)

~e
]

<xp(t-1) - xp(t),xp(t-1)>

-_) - o[ 1
¢ |xr(t-1) = xg(t)] T |xp(t-1) - xp(t)]

where < , > denotes the inner product of vectors, and

<xp(t-1) - x(t),xp(t-1)> |
1+

[xp(t-1) - x(£)| |
1-t = (2-4)

<xp(t-1) - xR(t),;T(t—t)>—
1+
l_ c |xT(t-r) - XR(t)I

If the sensor is motionless, then Eqs. 2-3 and 2-4 reduce to

<xp(t=1) = xg,x(t-1)>

{-= (2—5)
- <xp(t-t) - XR,;T(I—T)>
> ¢ |xp(t=1) - xg] + |1 +
c [xp(t-1) - xg]
‘f
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0 1-1 - (2-6)
3 -1 = . -
™~ .
<xr(t-1) - xg,xp(t-1)>
1+
l c |xp(t-1) - xg]
?‘ If the target is motionless, then Egqs. 2-3 and 2-4 reduce to
oy
. - <XT - XR(t),XR(t)>
‘ T = ’ (2-7)
c |xr = xg(t)]
s.
+ .
» . <xp = xg(t),xg(t)>
-t = 1 + . (2-8)
;F c IxT - xR(t)l
™
. The time delay model presented here in Eq. 2-2 is an approximation to
the exact solution of the three-dimensional wave equation for a moving point
;ﬁ source. The exact solution for the case of a stationary receiver (QR = 0) is
rl
derived in Appendix A and is given by
1-:
| y(t) = yp(t-t) » 420 (2-9)
cT
>e
3

where yp(t) is the sound pressure level at the point source and yg(t) is the

sound pressure level at the receiver.

2.3 ATTENUATION

;"-"v
?\
- Real signals are attenuated as they propagate. Such effects can be added
;3 in the time delay model by defining an attenuation function
B

A(xT,xg) = ratio of transmitted to received
{; signal amplitude for transmitter
> at xt and receiver at xg.
. The corresponding received signal model is
iy
=z
) yr(t) = A(xp(t-1),xg(t)) yr(t-1) . (2-10)
i

14
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The attenuation function might satisfy a power law

A(xT,xg) = |xT - xg]Y (2-11)
. where y = -2 for spherical spreading (propagation in three dimensions), y = -1
b
L for cylindrical spreading (propagation in two dimensions), or something in
L: between (-2 < y < -1). Urick [4] notes some values of y to use in the sonar
)
- propagation loss function (which is essentially what is being modeled).
:ﬁ Note that the exact solution (Eq. 2-9) for the homogeneous three-
LR
- dimensional case includes the geometric attenuation due to spherical spreading
- (the factor appears only as (ct)~l = r~l attenuation of sound pressure level).
& 2.4 ASPECT DEPENDENCE

Figure 2-2 shows the geometry of aspect dependence of the transmitted
signal yyp. Note that in this section we assume that receiver and transmitter

are moving in a plane. The notation is

x(t) Transmitter location at time t;
xg(t) = Receiver location at time t;

yr(t) = Signal transmitted at time t;

I

.

- yr(t) = Signal received at time t;

t} $a(t) = Acoustic (delayed) aspect angle

o of target at time t;

~ t(t) = Delay in signal received at time t;

o g(¢) = Directivity of transmitted signal
relative to target heading.

r.

:5 The tracrsmitted and received signals are related by

N

.\.3 yr(t) = g(¢a(t)) yp(e-1) . (2-12)

N

15
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Note that ¢, satisfies

- <xp(t-t) - XR(t),;T(t‘T)>
cos(pa(t)) = - . (2-13)
er(e-0) - xg(o)] [*rCe-0)|

If the source transmits several different signals yp yx with different direc-
tivity functions gy, then the received signal is the superposition of signals

(Eq. 2-12). That is,

n
yr(t) = 1 sgk(¢a(t)) yr,klt-1) . (2-14)
k=1

To treat transmitters and receivers moving in three dimensions, define

bg(t) = delayed bearing directional vector at time t,
xp(t-1) - xp(t)
| xp(t-1) - xg(t)] ’
vr(t) = target heading directional vector at time t,
;T(t)
) lip(o)]

The source directivity g should be a function of b and vy so that the received

signal is given by
yr(t) = g(bd(t),vT(t-r)) yr(t=-1) . (2-15)

If the receiver is motionless, then the delayed bearing is related to the

instantaneous bearing by the equation

bg(t) = b(t-1) (2-16)

where b(t) is defined as

17
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b(t) = instantaneous directional bearing vector,
XT(t) = XRp
|xp(t) - xg]

2.5 SENSOR DIRECTIVITY
Sensor directivity can be treated similar to aspect angle dependence.

Figure 2-3 shows the geometry; as in the previous section, we assume that
receiver and transmitter are coplanar. Define the notation

Xt(t) = Transmitter location at time t;

xg(t) = Receiver location at time t;

yr(t) = Signal transmitted at time t;

yr(t) = Signal received at time t;

Ba(t) = Acoustic (delayed) bearing angle
to target at time t;

7(t) = Delay in signal received at time t;
h(¢) = Directivity of received signal
relative to receiver velocity

or fixed reference direction.

The relation between transmitted and received signals is similar to Eq. 2~-12:
yr(t) = h(Ba(t)) yp(t-1) . (2-17)

Note that B, satisfies

<xp(t=1) = xg(t),xg(t)>
cos(Ba(t)) = - . (2-18)
|xp(t-1) = xp(t)| |*p(t)]

If the receiver is not moving, replace xg by a reference vector in Eq. 2-18.

A source transmitting multiple signals is modeled by

43
yr(t) = h(Ba(t)) } vyr,klt-1) . (2-19)
k=1
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2.6 NOISE MODEL

AR

In this section we will only present a model for ambient background

noise, which we model as an additive noise term in the equation for the

8

’;ﬁ received signal. Define
OO
- b
‘:a - n(t) = Ambient background noise near the
N receiver at time t;
‘ﬁd g{ yr(t) = Signal transmitted at time t;
: - yr(t) = Signal received at time t;
N
) )
N 7(t) = Delay in signal received at time t;
relative to receiver velocity or
g r fixed reference direction.
y s
ﬁl, The relationship between the received signal and the transmitted signral and
h w
L) W
'5" :'é background noise is given by
Y

yr(t) = yr(t-t) + n(t) . (2-20)

LEL

Note that the noise process n(t) in Eq. 2-20 is not delayed since it does not

=

originate from the target. Note also that nothing is said about how n(t)

Y

o

? X :f depends on the receiver location. One can include a model of the correlation
?Q such as

o L

N : N E{n1(t)nz(s)} = R(x1(t)=-x2(s),t~s) (2-21)
N

SN

b for two receivers of the same type located at xj and xj5.

SO P 1 2

P!

¢ &

"&: }ﬁ 2.7 EXAMPLE

,ff To illustrate the time delay model described above, consider a single
1, il

_'~.) ¥

‘{ﬁ 5: source moving with constant velocity and emitting a narrowband signal. The
=@

L. source trajectory satisfies the differential equation.

SRS =t
b
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b
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“a d2xt

EN =0 . (2-22)
T de?

l! The source signal satisfies the stochastic differential equation

oy deT = £ dt + o dw (2-23)

where f is the constant source frequency, w is a standard Wiener process, and

AP |

the transmitted signal is

s
T

yT(t) = sin ¢(t) . (2-24)

A

-
i 8

The signal yp is a (wide-sense) stationary process with total power 1/2 and

-
«

two-sided power spectral density at frequency w given by

h o

4

I+ £2 42

o 4

e . (2-25)
‘ 4 4

[s] [0

— 4 (f-)2 || — + (ftw)?

4 4

28

h g

This expression represents a spectrum with peak at frequency f (or f and -f

e Y

for the two-sided spectrum) and width proportional to ol.

Now suppose that there is a motionless sensor located at xg. Consider

- a "difar” -~ i.e., a sonobuoy with (limited) horizontal directivity. Here we
__J

N assume a two-dimensional model and the difar measures three things:

f; an omnidirectional measurement,

w. dYR,l = A] yr(t-t) dt + dny (2-26)
.

.17

and two direction measurements,

dyr,2 = A2 cos(8(t-1)) yr(t-1) dt + dny (2-27)

v
-

LA
»
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93t T6 R

dyR’3 = A3 sin(B(t—T)) yr(t-1) dt + dny . (2-28)

In these equations, Tt is the time delay obtained from
1
t = — |xp(t-1) - xg| (2-29)
c

The bearing angle 8 is defined by the equation

cos(B(t)) xp(t)-xg

(2-30)

Sin(B(t)) ]xT(t)—le

We assume that nj, np, nj are standard Wiener processes so that the parameters
(Al)z, (Az)z, (A3)2 are signal-to-noise ratios (signal power divided by noise
power, where power equals mean square average). Because xr 1s a constant

velocity trajectory, we can use
xp(t) = x7(0) + t xp(0) (2-31)

to solve explicitly for t as a function of t, xp(0), and ;T(O). If we use

the notation

v = xp(0) (2-32)
u = xp(0)=xg + t xp(0) , (2-33)
then v is glven the formula
1/2
1 1 ) vz} w2
— v, | — v, + 1l - — o —
c C2 C2 C2
T = (2-34)
Iv|2
c2

where <v,u> is the scalar product between vectors u and V.
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We will now show how to express this model in terms of stochastic differ-
ential equations without explicit time delays such as t-t. Let ¢p(t) denote

¢7(t-1). Then we can rewrite Eqs. 2-26, 2-27, and 2-28 as

dyr,1 = Ay sin(er(t)) dt + dnj (2-35)
dyg,2 = Az cos(B8(t-1)) sin{¢g(t)) dt + dny (2-36)
dyg,3 = A3 sin(B(t-1)) sin(¢g(t)) dt + dn3z . (2-37)

According to McKean [5, p. 41], ¢gr(t) satisfies the stochastic differential

equation

dég = £(1-1)dt + o (1-1)1/2 dw (2-38)

where w is a standard Wiener process. In other words, the Doppler effect not
only shifts the frequency f but it also expands the bandwidth of the signal.
The factor (1-%)1/2 may not matter much if T is very small. However, for
broadband source signals, this factor is very critical in allowing one to

estimate any Doppler effects from the received signal.

To summarize, the time delay model gives us the following differential

equation model for a single target and a single directional seusor:

dsz
= 0 (2-39)
at?
. 1
l-1 = (2-40)
<xp(t=t1) ~ XR,xp(t-1)>
1+
¢ |xp(t=1)-xp]
23
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W
sE ot deg = f(l1-1)dt + o (1-1)1/2 dw (2-41)
; 19
N
Al ' dygr,1 = Ay sin(¢r(t)) dt + dnj (2-42)
f.’ - dyR’z = Aj COS(B(t“r)) Sin(¢R(t)) dt + dnj (2-43)
o dyg,3 = A3 sin(8(t-1)) sin(eg(r)) dt + dnj (2-44)
"\‘ ..
?: where 1 is given by
o 5_
TN v = —— [xp(e-1) - xg| (2-45)
.
N and 8 is given by
S
I
R cos(B(t)) x7(t)-xR
P = — . (2-46)
o sin(8(t)) {xp(t)-xg|
e
e A -~
i In [6],[7] we used a similar model that approximated t = O in Egs. 2-40, 2-43,
- d 2-44, and 2-45, and ignored the (1-t)1/2 factor in Eq. 2-41. This gives the
.
; -, approximate model
, -
" - d2xT
=0 (2-47)
L ac2
S
Al
S
SO 1
Lo 1-% = (2-48)
> <xp(t) - xR,QT(t)>
[ ] - 1+
SO c IxT(t) - XR|
O, T
.‘ )
¢
¢
;3 : v 49
v d¢g = £(l-1)dt + o dw (2-49)
@
‘o‘ .
LN d = A i t dt + dn (2-50)
A yR,1 = A1 sin(¢r(t)) 1
\l.‘ -
P: '-"
B -
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:‘ . dygr 2 = A2 cos(8(t)) sin{¢r(t)) dt + day (2-51)
SN
& ' dyg, 3 = A3 sin(B(t)) sin{eg(t)) dt + dn3 (2~52)
a
We will use this example to motivate our study of filter architectures and
-'J': - time-scale approximations in subsequent sections of this report. In the next
Wy
o o
. ‘.r section we will describe perturbation parameters that can be introduced into
NI . .
;'.- this model and which we will exploit to obtain reduced order approximations
‘:'i
NS of optimal filters for problems such as this.
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SECTION 3

STOCHASTIC ESTIMATION THEORY

3.1 INTRODUCTION

The first part of this section describes some special features of the
passive acoustic tracking model that we can exploit to design approximate
optimal filters. These features are not limited to acoustic tracking problems
and they are present in many other signal processing and estimation problems.
For this reason we will formulate a general class of stochastic perturbation
problems which will form the basis of our research. Our work relies on the
methods of stochastic differential equations and nonlinear filtering theory
{8]- The second part of this section reviews the basic models and results of

this theory.

3.2 FEATURES OF ACOUSTIC TRACKING MODELS
The example model described in subsection 2.7 has a general quasilinear

form described by three coupled stochastic differential equations:

dx = Fx dt + G dw (3-1)
dz = A(x)z dt + B(x) du (3-2)
dy = C(x)z dt + D(x) dv (3-3)

In these equations w, u, v are assumed to be independent Brownian motion

processes. The first equation (Eq. 3-1) describes the target dynamics and

26
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J;:'i" .E the second two equations (Egs. 3-2 and 3-3) describe the dynamics of the

‘ i observed signal y(t) and its dependence on the target state x(t). The matrix
- ‘ E coefficients A, B, C, and D depend on the target state x in order to account
) for such effects as Doppler shifted frequency, directivity of the sensor, and

aspect dependence of the target emissions.

o .a &, -
ot %
v

) p Signal processing and tracking problems often have a signal process y(t)
»" -_':
o with a shorter time constant than the target process x(t). This is the case
I"- .,
i:‘ NG in passive acoustic tracking where the target dynamics are very slow relative
JQ' =, "
to the acoustic signal dynamics. We can make this time scale explicit by per-
. X
LSLY -~
:::'» turbing the stochastic differential equations as follows.
"
<
NN
oy dx = Fx dt + G dw (3-4)
e
Yo 1/2
e geedz = A(x)z dt + ¢ +B(x) du (3-5)
T
.:~,
>0
N f: e+dy = C(x)z dt + el/2.p(x) dv (3-6)
‘ ¢
e
;}j The parameter ¢ is proportional to the time constant of the signal process.
f ."J ~
'.“- -; : :
o Note that the square root 51/2 arises because we are using white noise (du and
o
.
) 1L dv) to drive these stochastic differential equations; speeding up a Brownian
t,"n “n
gt motion is mathematically equivalent to scaling its magnitude.
\':- RS
::{ : The equations in Eqs. 3-5 and 3-6 are singularly perturbed. That is,
YRR
wha
9 - their small ¢ # 0 behavior cannot be approximated by simply setting ¢ = O.
\:}: : Nevertheless, there are ways to obtain good approximations to the solution
P
-_'-\
-}: o~ of singularly-perturbed problems for small ¢. There is a vast literature on
Wy a
On singularly-perturbed differential equations. The papers [9],[10] review the
e -
SO work relevant to control and estimation applications. We will review work
"l
o
AN specifically relevant to our estimation problem in the next section.
‘i
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-
-

s

o :J

S

:’_\ o As ¢ approaches 0 in Eqs. 3-5 and 3-6, the rate of information increases
Y N\

f\ -

2 to infinity. For example, suppose there is no z process and we have only the
;,

! two simpler equations

'§) '
‘J
!'J
-;.* ,{E dx = Fx dt + G dw , 3-7)
."' t
l-

¢ eedy = C(x) dt + el/2.p(x) dv , (3-8)
W
, A where y is measured and we want to estimate x. This estimation problem is
] e
i':‘ ».:
o (Y equivalent to one with equations

3y -
!‘p ";- dx = Fx dt + G dw N (3_9)
LA
oy
s W = 1/2
oy dy = C(x) dt + ¢ «D(x) dv . (3-10)
:" . This is an example of an almost singular filtering problem, which we will dis-
S

Y,

.

- cuss in Section 4. Note that the signal-to-noise ratio (Eq. 3-10) is propor-
"
S

i 6 tional to e"l. Thus, as the signal process becomes faster relative to the

‘
[

" target process, the SNR of the signal becomes larger.
L -

f i Passive acoustic signals typically have low SNR, and a model which pre-

U
K
J L dicts increasing SNR is not realistic. Thus, it is necessary to modify the
s 5
,\,‘_ - perturbation above to control the SNR. Note that the noise coefficients B
o and D in Eqs. 3-5 and 3-6 are likely to be large and we cannot let the time

+"

U

@ scale ¢ be arbitrarily small independent of these noise factors. Thus, we

N u-
S modify Eqs. 3-5 and 3-6 by adding two functions, gj(e) and go(e) to allow

+
*‘I

VN different scalings of the noise.

~: e+dz = A(x)z dt + g1(e)+B(x) du (3-11)
o eedy = C(x)z dt + gy(e)+d(x) dv (3-12)
o
i -
"* 28
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If g1(e) = go(e) = 61/2, we have the pure time-scale perturbation. We can
accouant for greater noise by allowing different functions of €. For example,
g2(€) = 1 causes the SNR to remain constant as € + 0, and gy(e) = 5‘1/2 causes
SNR to decrease to 0 as € + 0. In Section 4 we will survey previous work on
perturbed filtering problems with an eye to different possible choices for
81,82+ Before doing that, let us first review the basic results of nonlinear

filtering theory which 1s the basis of our approach.

3.3 FILTERING MODELS AND EQUATIONS
The model of passive acoustic tracking described above is an example of
a general class of nonlinear, continuous state, continuous time processes

driven by white noise. This class has the generic form
dx = f(x) dt + g(x) dw (3-13)
dy = h(x) dt + dv (3-14)

where w and v are independent multidimensional Brownian motion processes. The
filtering problem is to estimate x(t) given the measurements y(s) for O<s<t.
The filtering equations in the general nonlinear case are expressed are
expressed as follows. Let ¢ be a function of the state variable x. Define
me(¢) to be the conditional expectation of ¢(x(t)) given the measurements up
to time t. The filtering equation expresses m (¢) in terms of a stochastic

differential equations as follows {[11],{12]:
dre(¢) = me(Ld) + [me(he) - me(h)me ()] dve (3-15)

where vy is the innovations process satisfying the stochastic differential

equation

29
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dve = dy(t) - ne(h)de (3-16)

and L is the infinitesimal generator of the process x(t) [l1]. In all but a
few cases, the solution of Eq. 3-15 requires an infinite dimensional calcula-
tion. Nevertheless, there are several types of additional models which have
finite dimensional solutions and that can be used to help gain insight ianto
the essential behavior of the filtering problem. In this subsection we will
describe these models and the related filtering equations that apply to them.
The simplest case is the familiar linear Gaussian model which has

equations

dx

AxX dt + B dw (3-17)

dy Cx dt + D dv . (3-18)

In this case w and v are assumed to be independent Brownian motion processes.
The optimal filter in this case is the well-known Kalman-Bucy filter [8] which
expresses the conditional probability density of x in terms of its mean x and

covariance P. These satisfy the equations

dx = Ax dt + P(DRDT)~1cT(dy - cxdet) , (3-19)
dp = (ap + pAT + BQBT - pcT(DRDT)~lcp) dt . (3-20)

Note that Eq. 3-19 is a stochastic differential equation but that Eq. 3-20 is
purely deterministic.

Linear Gaussian models are useful because they can often be used in
practice to solve nonlinear problems by linearization. Note that the acoustic

tracking model is quasilinear as indicated in Eqs. 3-1, 3-2, and 3-3, and
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L linearization techniques may be helpful in this case. Nevertheless, linear

- models and methods are limited and are known to perform poorly in nonlinear

, " problems with low SNR. Furthermore, methods for analyzing linear problems
4 )
I“‘.‘ . s .
RSK center around the analysis of the Riccati equation (Eq. 3-20) and do not gen-
zij <. eralize to nonlinear problems. For this reason we have also chosen two types
Ft
‘ ) 1 of discrete state problems to analyze. In these problems x(t) is a finite-
A e,
-;:: . state continuous—time Markov process and the filtering equations are a finite
>
NN dimensional system of stochastic differential equations.
~H\ ‘~ - q
SN S
A finite-state Markov process is described in terms of its tramsition
X iﬁ f} rate matrtix A, where the elements A(gzlgl) of A are the transition rates
t\?
DO
L UERAN
g Ty Pr{x(t+dt)=go|x(t)=£1} = 65162 + X(gzlgl)-dt + o(dt). (3-21)
° s
s \:‘» .
i:{: -~ If pp denotes the vector of probabilities Pr{x(t)=f£}, then py satisfies the
- !
RN}
:;- linear differential equation
- - \

o~
f—
- )

dpy = Apg dt . (3-22)

SN
AR
B
!.-k' 4

s

In the first discrete model we use the same measurement equations as

v
a
.

R

Eq. 3-14, and it is discussed in {11]-[13]. The filtering equation (Eq. 3-15)

r2 77

still applies, but it is finite-dimensional in this case. Let =y denote the

a;;ﬁh;
. ™
>

vector of conditional probabilities Pr{x(t)=g|y(s),0<s<t}. Then ny satisfies

Pt it L)
Ot
.
[
a

.- the stochastic differential equation

.
S -'t"n"/
| 2 R S I § l_d
z

dny = Amg + [h¥ne = neThne] dvg (3-23)

.
)

)
’
lK
.
kv L’
.,

*

@ where h is the vector with components h(g§), h™ is the diagnonal matrix with

Yy
WA o
oo

«
v

."-J\l

elements h(£), and vy satisfies
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dvg = dy(t) - tTmg de . (3-24)

The second type of discrete model we will investigate has discrete mea-

surements as well as a discrete state. 1In this model y(t) is given by
y(t) = h(x(2)) , (3-25)

and we call this a partially observed Markov process. In this case the fil-
tering equation is a finite-dimensional stochastic differential equation
driven by a jump process J. (which is the number of jumps of y(s) in the

interval [0,t]):
dne(£) = Fp dt + Gp dJ, (3-26)
where Fy and G, are given by
Fy = Gh(g)y(t)'[é'k(5|€')ﬂt(5')'ﬂt(5)z'X(Y(t)|€')ﬂt(5')] (3-27)
where

A(y(e)|g) = £ aMe'ley
h(g')=y(t)

L AE|E" ) me-(E")

E'
Gt = Sh(g)y(t) * - wme-(E) . (3-28)
Ay(e) g )me~(E")

Appendix B derives this filtering equation and discusses several variations
of the model and of the filtering equation that will be used in studying this

type of problem.
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SECTION 4

FILTERING PROBLEMS WITH TIME SCALES

4.1 INTRODUCTION

In this section we review previous work on stochastic filtering problems
with multiple time scales that has some relevance to our problem. Although
no previous work addresses the problem of interest to us, some of this work is
related and the methods used serve as a point of departure for our research.
Subsection 4.2 reviews work on problems of estimation when some state compo-
nents are known exactly (the singular estimation problem) or very accurately
(the almost singular estimation problem). Multiple time scales arise in the
solution of almost singular estimation problems, and singular perturbation
methods can be used to solve such problems. As noted in the previous section,
the almost singular estimation problem is equivalent to a simple variation of
one of our models. Thus, both the results and the methods are of interest.
Subsection 4.3 discusses work on estimation problems with natural time scales
-- that is, problems in which the time scale is introduced explicitly as a
singularly-perturbed filtering problem. Although the models used in this
work do not quite include the one we have described for the passive acoustic
tracking problem, they are closely related and the methods of analysis are of

interest.
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1 4.2 SINGULAR AND NEARLY-SINGULAR FILTERING PROBLEMS
E 4.2.1 Introduction
|§ The problem of interest in our work is characterized by a very high
intensity for the measurement noise, but with a long time horizon to perform
:} tracking, so many measurements may be taken. Ideally, we expect a tradeoff

between the poor measuremeut quality and the number of measurements which are

%

W&

. available. Since this is the main distinguishing feature of the problem from
2. other nonlinear filtering problems, it is papers in this area that are most

e

.

thoroughly discussed.
<
jﬁ The problem of poor measurements over a long time horizon has received

s

little, if any, attention in the literature. the related problem of estima-

T

tion with good measurements over a very short period of time has been dealt
I with extensively. 1In addition, the dual to this estimation problem, the cheap

control problem, has received significant attention.

E 4.2.2 Singular Estimation and Control

The limiting case of estimation in low noise (control with small input
penalty) is the situation where noise intensity is zero (penalty associated
g with the inputs 1is zero). These problems are known as the singular estima-
tion and singular control problems, respectively. They have been examined

. most extensively for linear Gaussian models.
by For the case of linear systems with a continuous state space, Willems,
Kitapci and Silverman [l4] investigated the singular coantrol problem while

Schumacher {15] examines singular filtering. Both papers deal with systems

that can be described in the form:
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x(t) = Ax(t) + Bu(t)

Loy m -
s

y(t) Cx(t) + Du(t)

e

where u(t) is the input in the control problem and noise process in the esti-
‘. mation problem.

Schumacher handles the filtering problem by breaking the state space into
!V two subspaces, one which can be estimated exactly because part of the obser-

vations are uncorrupted by measurement noise and the other which is observed

i: only in noise. The representation of the system becomes:
:~: ;(l(t) = Allxl(t) + Apoxo(t) + Byu(t)

.. x2(t) = Ag1x1(t) + Agoxp(t) + Bou(t)

o

- y(t) = C1x1(t) + Coxa(t) + Du(t) .

x2(t) can be determined exactly from y and its derivatives and also we can

construct a matrix Gy so that
x1(t) = (A11+G1C1)x1(t)-Gyy(t) ,

Note that the equation for él(t) driven by y(t) is of the same form as a

- é- Kalman filter and indeed this reduces to the usual Kalman filter when there
N3 .
o
k. L]
:i- are no noise-free observations.
-:.‘. -
*: oL The work of Willems et al. [14] deals with the control version of the
!1 = problem. Given the state variables x(t) and coatrol variables u(t) from
.-\- ~l
lx'
Y .
. x(t) = Ax(t) + Bu(t)
-:;' -: ~
o Y y(t) = Cx(t) + Du(t)
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¥
e some of the controls are assocliated with zero penalty. Therefore, there are
Y :
" two subspaces for u, one in which infinite magnitude inputs such as impulses
!? are allowed (zero cost portion) and the other where regular (finite magnitude)
LY

inputs only are possible. The state space is divided into subspaces such as
. the output nulling subspace, controllable subspaces, almost nulling subspaces
L and combinations thereof. The paper shows that the optimal control consists
by
o of a set of inputs which forces the state to jump to the subspace controllable
> by regular inputs. The subsequent trajectory of the state remains within the
A_:F

subspace.
ﬂf This compares to the filtering problem of Schumacher where the uncor-

rupted subspace was estimated exactly and instantly, while the variables in
ol the remaining subspace were estimated over a finite time interval, with imper-
. fect accuracy, by linear filtering techniques.
? The singular filtering problem for discrete time linear systems has been
iﬂ addressed by Shaked [16]. The system investigated is of the form
N Xj+] = Axj + Bwj

yi = Cxi vy

e
4
o where E[vivj] = réjj and r + O.
- The paper distinguishes between the cases of uniform and nonuniform rank.

A uniform rank system has the property
-

CAIB = 0 for i = 0,1,...,2-1
- and
det|ca%B| # 0
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which simply means that there is an equal number of integrations (countinuous
time) or delays (discrete time) between the inputs and the outputs.
A solution is given explicitly in both cases for the steady-state values

of the Kalman gain and the error covariance matrix.

4.2.3 Singularly-Perturbed and Nearly-Singular Estimation and Control

The previous subsection dealt with filtering problems that had uncorrupted
measurements aand control problems with inputs associated with zero penalty.
A great deal of attention has been given in the literature to closely related
nearly-singular problems. In these cases, the noise in the estimation problem
and penalty on inputs in the control problem are small and positive but not
exactly zero. The nearly singular estimation problem is discussed by Krener
[17] for linear systems (and a restricted class of nonlinear systems), while
the linear cheap control problem is handled by Sannuti [18]-[21].

The work by Krener deals with systems of the form:

dx Axdt + B(e)dw w, v, Brownian motion

processes.

dy

Cxdt + D(e)dv ,

with the matrices B(e) and D(e) being a function of the small positive param-—
eter €. The approach used to solve the filtering problem by Krener is to take
the perturbation parameter ¢ out of the noise covariance matrix and incorpor-
ate it into the dynamics of the system. By assuming particular structure for

B(e) and D(e), he first transforms the system abova into the form

37




N
™~
~ Y .-
- ALPHATECH, INC.
:.."
S ~ - - - -
o ] | ]
15 dxp Aff Afs || % Beg(e) O] dwg
.‘a. = dr +
i ! dxg At Ass || xg 0 I || dwg
., - L J L d L gL
-
~ C T 1T 7
2 dyf Cee Og || xf Deg(e) O | dve
‘ . = dt +
o . dyg 0 Css Xg 0 I{]dvg
5 J::' | — L Ju L - —J
) IS where xg are the states which can be estimated quickly and yg are the outputs
\ KN which are corrupted only by a low-intensity noise process. A further assump-
AN
3:::: ) tion on Bfg(e) and Dgg(e) and a scaling of the state and output variables
N\
,.: ;-s yields a system of the form:
R - T 7 -
. A dEf E—]'Aff E_l/ZAfS Ef 8—1/2 0 dwg
v = dt +
s deg o(el/2y  Agq £q 0 1||dwg
i v - - L. _J .
‘.":
— 9 - — -
\:, dyf e—ICff 0 Ef el/21 0 dvg
t{ = dt +
J [‘ dyg 0 Csg Eg 0 Ij|dvg
R L J L ] _ |
.
SO
'.:'.;- J‘: The resulting perturbations in the dynamics of the system allow Kremer to
® approximate the solutions to the entire Riccati equation. He solves smaller-
R
\_:».:- e order problems by expanding the solution in a power series and keeping only
:::,'-_ leading-order powers of e. The solution demonstrates that there are two rates
;' . associated with the dynamics of the Riccati equation when some states are
-5
I corrupted by small noise.
"‘-.
{.A
- Krener extends the problem to the case where
ro
A =
N 38
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dxg¢ Afs  Agg £ 0 Bee O dwg
= dt + dt +
dxg Agr Agg s ag(xf) V) 1 dwg

X

X

and shows that the optimal filter can be approximated by the linearized ver-
sion, where ag(xs) is replaced by ag(xf) and xf is the estimate of the vari-
ables which can be quickly estimated.

The cheap control problem for linear systems has been investigated by
Sannuti [18]-[{21]). In [18] and [21]) specifically, the linear regulator
problem is considered in which the controls are penalized by an amount which
is 0(e) = O(u2) smaller than the penalty associated with outputs of equivalent

magnitude. Therefore we have a system of the form:

x = Fx + Gu
y = Hx
1 tf
J = 5 xT S(te)x + f (yTAy + uzuTBu ) de .
to ‘

In [22], Sannuti and Wason demonstrate how an invertible system can be
put into an "almost observable” form using an invertible linear transforma-

tion. The system can be written as the following when in this form:

X0 = Agoxp t Apg1xy

k
X{a = ) Ajjxj +Dju , 1= 1,...,k
j=0
:Zib = a{X{ + Xi4] , 1= 1,...,k-1
y = Hxy

39
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>, The structure generated by this form is shown in a block diagram in Fig.
NN
::: 4-1. The key feature to this structure is the number of integrations along
o
" ' cach path from input to output. In general, there are paths with 1,2, ...

'~ K-1 and K integrators in series. Given the representation above and the cost
::2 .‘:: function, Sannuti shows that the magnitude of the optimal controls will be
Rl

. [ 0(u~1). Furthermore, the high gain of O(u~l) will be evenly distributed

":;t across the integrations of each path.

s
::f Therefore, for the forward path with three integrators, the inputs to the

integrators will be O(u"l), O(u'2/3), and O(u'1/3) as shown in Fig. 4-2. 1In

"X
FON the additional dynamics for xg, the integrator input is the same order as y.
N, -

N
-:;‘- - To understand the effect on the dynamics of the control law, we recognize
f d.: :.-

- that the integrator inputs are the derivatives of the state variables, so that
:’_. the dynamics are clearly speeded up. Sannuti proceeds to scale the state

. variables and coantrols so that the new inputs to the integrators are all of
! n the same order. For the case of a three-integration chain we can consider a
2
-

I simple example.

SN

-. '_':' — F — A—N T —

J L X1 0 1 0 X1 0

- Xy =10 0 1|lxp|+]0]u
K-

BN, . 2 ~

e X3 0 0 0 X3 lJ
) L 4L JL 4 L
AN

L T

+ ~ ~ ~T~ T
AL y=[1 0 O]x J=f(yTy+uuu2 dc .

o ' 0
o e
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K.

Oy ™
"i" P Under the optimal control we will have:
---* i p
SIS
b) ..\ ~ -1
o 0(u) = 0(u™%)
. E 0(X3) = 0(u~2/3)
,r:'_- -
K ~ -
o 0(Xp) = o(u~1/3)
"..-: :_: -
Ml 0(X1) = O(y) = 0(1) .
‘) R
\~" "
”a P':_\ To scale all the derivatives to order O(u'1/3) we let
Ny
L)
Al = yu
‘4‘.(- 'r:‘_‘ u = pu
"...{ v
x3 = u2/3 %
gy i) ~
e xp = ul/3 %,
-
. X] = X
on o
B "u‘ 1)
~$\ . to obtain:
S
Y — 7 — 7
fry x 0 1 o_} 0
S
o 1 "1
l.‘.. y .
\ (i wl/31x =10 0o 1f{xp|+]0}u
.‘;-hﬁ *
NS X3 0 0 0 X3 1
tovl, L 1L JL L
% X T
~T~
J q J=f(yy+uu)dt.
L ) d 0
§ A
A
.\‘1‘
_.:.-;. Therefore the result of the u?- in the original cost function is a time scaling
e
»,
:' of u1/3. In the case where there are k integrations in series, the scaling
7 ™
LA -
S will be ullk. Therefore, for systems with more than one forward path (multi-
T
}.: ple rank) there will be multiple time scales on which system behavior occurs.
o, .
PRI
O For the additional system,
75 2 ~ ~
e X = Agixy * AgoXo
N
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s
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we let
xg = %o
and therefore there is no time scaling effect.
Due to the duality between estimation and control problems, we can expect
a similar phenomena to occur in estimation problems. The above phenomena
resulted from the uzB term in the penalty function. The dual condition for

the estimation problem would be that
cov[G(t)&(s)] = qud(t,s)

which corresponds to the case of very good measuremeats [23, p. 270}.
To determine the behavior of the estimation problem, we start by w.rking
with general control and estimation problems, and generate the dual of the

cheap control problem.

CONTROL/ESTIMATION DUALITY
To obtain a general relationship between the (nearly) singular control
and (nearly) singular filter problems, we need to express the systems in the

general form:

CONTROL ESTIMATION
; = Fx + Gu ; = FTx + HTy
y = Hx y = GTy + v
1 T AL S, T cov(d) = A = Q
J o= —— x(tp)ts(eg)x(eg) + —— f ylAy + ulBu dt cov(v) = B = R .

to

Therefore, given the estimation problem:

44
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:‘5_ x = Fx + Hw ; cov(v:r)=I
-
E y = Gx + v cov(\;) = u21 ,
we can traanslate into the control problen:
:';1 :P': .
R x = FTy + GTu .
i ) L;
‘n\ -A'I T
4.\ ol y = H X
4~
P-, tf
{ 1
o J=—2—f yTy + w2uTu .
to
A
N~
S The transformation described by Sannuti could then be performed so that:
S
Y .
A X0 = AgoXo * Agix)
o
» \“ k
SRR i, = VA + D i=1 K
J - xia— z inj iu N = gee ey
L .
d Xjp = ajX] + X34 , 1=1,...,k-1
. :
g
N -
> - y = Hx)
o
o.: t
" 1 fr 2,T
by = +
D) L J 5 { y'y + p“utu
A hY] 0
») -
7
: ':'; Translating back into the estimation context we obtain:
) *o
..0 -
[ ]
A T . :
W > = AT + T
o g = Ajg%o * L A%,
. i=1
-{-
b - N
'C; ':A * T
S A .X + x, .,
@ 3 121 ij ia (j-1)b
A
h =
Y\, 45
-
SO
v
L
4' :'
o
R T T MO A O N S e 3 M NI A
Rt O (A Lol fo L e "' .' "‘r ' “' \! ':,\ l,l'!,i A M.o....! .0 y ; AT DSORER XN \i‘!"‘i.l.“ﬂf ‘(h‘ Tt
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% [
t'g‘i
LI . T k T k=1 T
S = + + +
S x| = AgXg Lo AL+ Toapg T
D j=1 i=1
MR
! k
‘ = g T ¥
._‘ F y Z Dix, +V
-t i=1
: -:.I -
. cov((¥(t),v(s)) = B&(t,s) .
i
.- - The original equations for the control problem implied the structure of
A
L) “»
:« e Fig. 4-1, while those for the filtering problem imply the structure of Fig.
O A
L S
R - 4-3. Therefore, we find that in the dual system, the form of the transformed
-._- 1‘; structure is the same (chains of integrators), with process noise replacing
o
'\::' the inputs and measurement noise added to the outputs.
.:n'. s
o :;_ The only minor differences are that the input and output matrices have
-.‘ .. reversed position and the state variables have assumed a transposed position
5 \'-
A y
e in the structure. However, since the variable labeling is arbitrary, we can
-
.'-". .
; " expect results for the filtering problem which are identical in form to those
*
. I
B obtained for the control problem.
"‘n
" To demonstrate the implications of Sannuti's results for an estimation
"y vt
S
,o_ problem, consider a simple example. Given that the special form required
J
I' [ by Sannuti is quite similar for the estimation problem, we can formulate a
Jl
N
;r: . problem that is already in the required form. Assume for simplicity that we
o
e have a similar system to the one considered in the control example:
e 0 1 0 0
e L L ~
ot x=| 0 0 1 x+| 0 ¥ = Ax + Bw
- 0 0 0 1
OO
LN ‘e
"W
"__: y=[ 1 0 0]X + u% = CX + uv
‘t -: .'-':
B |
o~ 46 |
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T

XY

& . We can write the filtering cquations:

) .

: ! X = aX + PcTy=2(5-cx)
B P = AP + PAT + 88T - BcTcpy—2
L.

T

E

which for our example become:

F‘:’i ol 2 e ~ ~
»~ X1 = Xp + w2 (¥ - X))
!
g . i
N 2 ~ ~ o~ X
, Ca X7 = x3 + U—ZPIZ(Y - x1)
i - N
) L ~ 0~ ~ ~
- X3 = w2B 3y - x) -
v
5 s.'j In the steady state,
r-
. By = 2u5/3 Pyp = 3u
- By, = 2p4/3 Byy = 2112/3
. Bia = B3 = 2u1/3

which result from the Riccati equations:

. By = 2Py - w %P2
R 2 ~ ~ o
S Pip = Pyp + Py3 - w2Py1F)
A Pi3 = Pa3 - wT2P11P)3
> Y 2 - o
) Py = 2Pp3 _ u 2Pp)?

< 2 ~ 2%
L = P23 = P33 - wP12P13
4 . .
L Bi3 = 1 - w232 .
{ .
1S

Now consider the transformation:

-

-
D <

al
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v
) _ ~
fg E;-_ x] = uw3/6%;
“
hX ' X2 = u-l/Z;Z y = u*5/6; .
B xy = w/6%,
A Then the Riccati equations become:
]
cnllt
o ‘-:s N B 7]
0 P11 2Py - P12
' = .
BN P12 P22 + P13 - P11P12
Pl u .
P P23 - Py1P
o u1/3 13 _ 1113
TSRS P2 | | 2P23 - P12
a0 .
CORN P23 P33 = P12P13
f0 Pl .
_ P33 1 - P13
SP 11 = w3/3p
W 12 = u4/3pp,
{ ] y
: P13 = wP13
IS <
S P22 = wP22
e C B3 = w2/3p);
S B33 = ul/3pss
v,
Lo "
../-' A,
\: - Solving the algebraic Riccati equations, we get
) * "o
'@
P1y = 2 Pp3 = 3
Py, = 2 Pyq = 2
Pi3 =1 P3q = 2

which upon transformation back to P yields our original result.

-----
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The filtering equations become:

LI IR
X1 0 1 0 X1 P11

ul/3 )?2 =10 0 1{|{xp |+ P12 (y-il) .
Z 0 0 ol}lx P
L. 3J | JL 3J L 13J

This result clearly resembles that obtained for the control problem (time-

scaling of the order u1/3).

From this new form of equations we can easily see the effects of the low

measurement noise.

1.

The dynamic behavior of the Riccati equation is "speeded up,”
thereby indicating that the filter reaches steady-state much
more quickly.

The filter dynamics themselves are speeded uﬁ.

The increased rate of filter convergence is given by a factor
u1/3 with three integrations. This would be u1 k for k inte-
grations, paralleling the cheap control case.

The ending steady-state covariances are decreased much more for
state variables that are close to the output rather than the
input (see Fig. 4-4). Therefore, the difference in covariance
of the process and measurement noise intensities is spread
evenly across the integrators, so low measurement noise may

not be extremely useful if we are estimating state variables

in a long sequence of integrations.

For the opposite case, when y is very large instead of very
small, the trend is reversed. We will be capable, compara-
tively, of estimating variables close to the process, while
variables that are close to the measurement in the chain may
not be possible to estimate.

For the reversed case (uy large), the convergence of the covar-
iance (and filter) to the steady state will be very slow.
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NEARLY-SINGULAR NONLINEAR ESTIMATION
The filtering problem for this type of model is discussed by Katzur,
Bobrovsky, and Schuss [24]. A system of the form:

dxy = m(xp)dt + odw,
(linear observations)

dy¢ h(x¢)dt + edvy

is discussed, where h(x{) is linear in x¢, w. and vy are unit intensity
Brownian motion processes and ¢ is a small positive parameter. The propa-
gation of the counditional density function in the form of Kushner's equation

is discussed. This yields an equation of the form:

dp = A*pdt + BE (h-h) (dy - h(xt)) dt
€

which 1s approximated using a power series expansion in e. A similar proce-
dure is used for Zakai's equation for the unnormalized conditional distribu-
tion in the case where h(xy) = x. (dealing with scalars).

An estimate for x (leading term) is then obtained as the solution to the

differential equation

-~

dx = - ¢

g g o
+ = dy = —— (dy- .
e Y c (dy-x)

Additional terms are obtained in higher orders of ¢ to improve accuracy.
These additional terms are found as functions of XS where xs is the solution

to the differential equation above. This yields, to first order in g,

~ * € *
X = X + — m(x + . . .
- m(xg)
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ALPHATECH, INC.

The advantages of this formulation is that a fast analog processor can
perform the averaging process required in the calculation of xs. After this
smoothing integration, a slower sampling can be performed, followed by the
nonlinear approximation above. Therefore, this technique naturally yields an

estimator structure with a fast front end” and a slow "back end” processor.

4.3 FILTERING WITH DYNAMICS POSSESSING NATURAL TIME SCALES

A second type or perturbed filtering problem which is of interest is the
case where the perturbation parameter is in the dynamics of the system instead
of the noise magnitudes. This problem and its control dual have been inves-
tigated by Chow and Kokotovic [25], Haddad [26], and Marchetti [27],[28].
In these cases the system displays behavior on multiple time scales before

the noise levels or control penalties are considered.

4.3.1 Continuous~State Problems

Chow and Kokotovic [25] analyze a control problem which is nonlinear and

displays behavior on two time scales. The model employed is of the form

x = aj(x) + Aj(x)z + By(x) u
e; = ag(x) + Ax(x)z + Bo(x) u .
J = f [P(x)+S'(x)z + z'Q(x)z + u'R(x)u] dat .

0

In their analysis, they attempt to obtain an approximate, but lower
dimension solution to this problem. The approach that is used is to initially
set £=0, solve for z and then determine the optimal slow control for the

reduced-order system. The fast subproblem is then solved using the fast
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ALPHATECH, INC.

subproblem is then solved using the fast dynamics and the solution to the slow

control problem. The two controls are then added together to obtain:

Ue = ug + ug .

where ug is the optimal control for £=0 and uf is a correction term required
because £#0. The dual estimation problem is quite similar. The extra diffi-
culty that arises for the estimation problem is that we also have white noise
present, which is fast when viewed at any time scale. The dual problem is,
however, discussed by Haddad [26] with results similar to those for the con-
trol problem.

Haddad considers a system of the form:

x = A1jx + Ajzz + Bju
e; = Ay1x + Apyz + Bju
y=Cx + Cz +v .

His first step is to perform a linear transformation to separate the fast and

slow parts of the state to obtain:

n = Agn + Bgu
eé = A2t + Bou n(tg) = no
y = Con + Cof + v £(tg) = &g -

As in Chow and Kokotovic's solution to the control problem, Haddad splits
the solution into two parts. The first part is obtained by setting €=0 and
solving for £ in terms of u, thereby assuming for this portion that £ is a
white-noise process. The resulting “slow” solution is shown to be valid to

0(e) for t » tg + u, where p is a small positive number. For the interval

54
N I P S N LT e % AR L I P L S S UL L | LS. T
ok G GRSt O NI N, CY N ER RNt Y
v . A o o Moy M N .ao~- Nl e

S e
e M b O LN



& ALPHATECH, INC.

o tg € t < tg + p}, an additional portion, known as the boundary layer, must be

- added <o the solution.

l! The term “boundary layer™ refers to an additional part of the solution
which i{s an ad justment for the facts that we have initial conditions and the

W £ process is not actually white noise.

The resultant filter is given by:

n = Aoﬁ + (P1Co' + P12C2')R-l(y - Coﬁ - Czé)
uE = AgE + (eP1pCo" + PoCy")R™L(y - Con - C26) -

S P> and Pyy are given by

F,(E) + D3(8) + 0(e)

= pp(t) =
- SN\
P12(t) = P1a(t) + P12(8) + 0(e)
e N
li where 8 = t/e and P2(8), P12(8) are corrections for boundary layer effects.

The slow mode filter may be implemented without the correction terms and still
be valid for all t > tg because the filter dynamics are slow and therefore

the boundary layer time interval will have negligible effect on its output.

<18

4.3.2 Discrete~State Problems

.
1
&

Marchetti {27] deals with discrete-state space problems, specifically

»
s

Markov chains. The system dynamics in these problems are singularly perturbed.

b The systems dealt with are of the form:
v dp¢€ = (B+eA)p.E
S dyt = h(xte)dt + dwte
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where p. ¢ is an n-dimensional column vector of probabilities, (B+eA) is a
state transition matrix, w€ is a standard Brownian motion process and h(x¢¥€)
is a function of the state. The fact that the transition matrix is B+eA,
will yield multiple time-scale behavior for the system, given that B satis-
fies certain conditions on its eigenvalues. Marchetti derives formulas for
propagating the Zakai equation by
l. Writing p.* as a power serles in e,
o
et = I pr(n)ek .
k=0
2. Substituting in the Zakai equation and equating power of «.
3. Writing the equations above in aggregate and decentralized
forms, thereby reducing the order of the systems of differential
equations.
Using the second step we can approximate the probability mass function
for the states of the system to any order in e that we desire; however, the
approximation will only be valid on an interval [0,T]. 1In {28] a variation

on this is developed which produces approximations over intervals of length

{0,T/e].

56

D,




5 ALPHATECH, INC
NN
‘l & ’ -
o e
S
Prrs
A5
SRS
:«?. ~
NS
\'\
ol ri
o v
s SECTION 5
.1-“: -7
-::: - FILTER ARCHITECTURES FOR TIME-SCALE APPROXIMATIONS
) )
) NN 5.1 COMPARISON OF FILTERING TECHNIQUES TO THE REQUIREMENTS OF OUR PROBLEM
) "
.-
L0 From our original discussion we are interested in the estimation problem
Voosdn
4‘:'!|.. - for the system
AN dx = Aj(x) + Bj(e) dwy
N A NS
-.‘-I.. .
::;.:a edz = AZ(X) + Bo(e) dwy
ACAE
AN (e)dy = C(x1,z) + D(e) dv .
(]
A
N CE The noise terms have magnitudes which are functions of € and therefore the
. system is in the nearly singular category (in addition to a perturbation in
i' (.’ the dynamics). 1In particular, we are interested in the case of poor measure—
e N
:';::: ments so we might set D(e) = /e I, and O(Bj(e)) = 0(1), 0(Ba(e)) = O(Ve ).
e
b The problem considered by Katzur et al. [24] falls into the same problem
AL
3 Iy category, but deals only with the scalar case and a system with one time scale.
gt 3
‘. - ‘l‘
o In addition, it deals with small noise instead of large noise. Finally, the
.r:_.-'
Y nonlinearities occur only in the state dynamics, not the observations.
,".’ ‘_"
\
;" The work by Haddad [26] is similar to our problem except that ours is
g >~
SO0
YN : nonlinear and he does not assume ¢ dependence of the noise magnitudes. In
o
:;:-_'-j - addition, his measurements are a function of both the fast and slow processes,
N
".'; . whereas we are measuring only the fast process.
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Krener [17] does not dea' with more than one natural time scale and
assumes that the ¢ dependence of the noise produces small noise instead of
large noise. Chow and Kokotovic [25] deal with a system with natural time
scales and nonlinearities. However, the problem does not contain ¢ dependen-
cies in the cost function which would become noise magnitudes in the filtering
dual.

Sannuti does not assume natural time scales for the system, but does deal
with time scales once they arise from perturbation parameters in the penalty
function. The dual of his assumptions, however, are that the noise intensity
is low.

Finally, Marchetti assumes perturbation parameters in the system dynamics.
The noise is also assumed to be bad in the case of [28]. 1In [27] he handles
an approximation that is valid only on [0,T], but [28] improves this to the
interval [0,l/¢].

In general, the exact problem that we are interested in has not been
handled in the literature due to a combination of the following features:

1. Measurements are nonlinear functions of the state.

2. Perturbations exist in both the dynamics and the noise
magnitudes.

3. We are interested in the high-noise case, not the low-noise
case.

Regardless of the exact applicability of the techniques covered in the
literature, we can examine the structures of the processors that are implied

by each of the techniques (or corresponding duals).
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ix 5.2 FILTER ARCHITECTURES OF EXISTING TECHNIQUES
- -~
* -
NI
jq - 5.2.1 Fast Front End, Slow Back End With Feed-Forward and Feedback (Fig. 5-1)
~"‘“
: l! This structure was motivated by the structures of existing processors.
i:} Not all existing structures have the feedback present, and depending on the
-
AN -
4:§ o problem conditions, it may or may not be very useful.
.
&I
)
v L‘ 5.2.2 Slow Processor with Correction (Fig. 5-2)
¢ i
"
g This structure is motivated by the work of Chow and Kokotovic [25] and
}4: ;; Haddad {26]. In both cases, the slow processor is the processor that would
. — be obtained if e=0, with the fast dynamics assumed arbitrarily fast. The slow
I:' ‘.
,i{ o results are then used, in combination with the model of the fast dynamics, to
o o determine the estimates of the fast variables.
N .‘ :;:
S 5.2.3 Fast Estimates Followed by Slow (Fig. 5-3)
;jf E This structure is motivated by problems with € in the cost function or
S
BN t{ noise magnitude (Schumacher, Krener, Willems). The parameter is taken into
{ ,
'~:ﬁ the system dynamics, resulting in a set of variables that may be estimated
o5k -
L ‘..
:ﬁ . quickly. Once these estimates are determined (i.e., steady state is reached)
LS
o
B L; they can be used to help in the estimation of variables that are corrupted by
Lo e greater noise.
Yo
K ﬁ " 5.2.4 Steady-State Solution with Boundary Layer (Fig. 5~4)
Na!
o — This structure was motivated by Sannuti and the cheap control problem.
ii: In this case a control was found which was valid on [0,«], but a correction
h:{ - had to be made over the initial time interval [0,e] to correct for the initial
. .
. e
- W, conditions. This correction was described as a "boundary layer.”
L CLAY
3 >
:.1 oy
T
"
S
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5.2.5

Multiple Lower—Order Filter (Fig. 5-5)

This structure was motivated by Marchetti's paper on the propagation of
the Zakai equation for a Markov chain. .Multiple lower-order filters perform

calculations which are combined to determine an approximate result for the

normalized probability mass function.

5.2.6 Fast Analog Processor Followed by Slow Digital Processor (Fig. 5-6)

This structure was proposed by Katzur et al. In [24] they showed that

for a nonlinear system and small measurement noise, a linear analog filter

could reduce the sample frequency prior to nonlinear manipulations.
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PROCESS A
y " [0.) '(%) > x
PROCESS

[0.€]

R-5461

Figure 5-4. Steady-State Solution with Boundary Layer

AGGRE-

> GATE
+
y ) P(t)
+
| —31 DECEN-

TRALIZED

R-5462

Figure 5-5. Multiple Lower-Order Filters

.-
ANALOG | %o [ DIGITAL | A
Y™ FasT *l stow [ T ¥
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Figure 5-6. Fast Analog Processor Followed by Slow Digital
Processor (Nonlinear Operations)
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SECTION 6

FILTERING PROBLEM FORMULATIONS

In this section we describe both the specific nonlinear filtering prob-
lems selected for analysis and the conjectured behavior and filter architec-
ture that these models suggest. The key features that we wished to capture
in the problems chosen for study are:

® The system models should possess both fast and slow dynamics

) Direct measurements of only the fast variables are made, and
these measurements may be of poor quality

L The principal objective is to estimate the slow variables

° The problems chosen should be as simple as possible in order
to facilitate analysis and our ability to gain insight into the
character of such estimation problems.

As discussed previously, the choice of these features was motivated by desire

to capture some of the critical aspects of passive acoustic tracking problems.

6.1 EXAMPLES SELECTED FOR ANALYSIS

In this section we describe two closely related examples that have formed
the focus of our detailed study. Both involve estimation for a particular

finite-state Markov process possessing two time scales.

6.1.1 Measurements Corrupted by White Noise

In this problem we are interested in estimating the state of the 4-state,
continuous~time finite state Markov process p(t) whose transition behavior is

depicted in Fig. 6-1. Here ¢ is a small parameter. This process spends most
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. €l
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¢
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- A, Ay
\_,
&
SRS EW,
- R-5558
._ ha) Figure 6~-1. A 4-State Markov Process
- of its time jumping between 1 and 2 or between 3 and 4 (the fast dynamics)
u "‘h.
and occasionally jumps between the left {1,2} and the right {3,4} (the slow
dynamics). We are ultimately interested in tracking the slow behavior given
nolsy measurements of only the fast dynamics. The measurement model we use
: ! to capture this is
: ..
R dy(t) = g(e) h(p(t))dt + dv(t) (6-1)
where v(t) is a standard Brownian motion, independent of p(t). The quantity
N
‘ g(e) is a function of ¢ which is used to model the relative quality of our
. :::: measurements. Its magnitude relative to ¢, which directly controls the SNR
a
¢ - of the measurements, is of central importance in our analysis. Finally, to
i guarantee that our weasurements provide us only with direct information about
.o the fast dynamics, we assume that
e
A
1 ) h(l) = h(3) = a
Coo.- (6-2)
.. h(2) = h(4) = 8
j ¢
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Y
P) )
,' N i.e., that our measurements indicate only if the process is on the top {1,3}
e $~
. * or the bottom of {2,4}.
ot
4! o
' 6.1.2 Perfect Measurements with Small Differences in Rates
::j - In this second model we consider the same 4~state process in Fig. 6-1,
- but in this case we assume that we have perfect knowledge of whether the pro-
! t
OO cess is on the top {1,3} or the bottom {3,4}. In order to capture the feature
4“-’.‘
:f that the measurements contain only weak, indirect information about left~right
7, "
7, S
: ' S behavior, we assume in this case that
D
£ A3 = A1 + a g(e)
(6-3)
K-, - Ay = A2 + B g(e) .
\ .~
° v
¢ 6.2 CONJECTURED ASYMPTOTIC BEHAVIOR AND FILTER ARCHITECTURES
J =l
>y .
»:- T In this subsection we perform some initial analysis of the nonlinear
"'.:!.'
3 filtering problems introduced in the preceding subsection. The end results

-~ of these analyses are several approximate filter structure whose properties
}j and performance versus the optimal solution are explored in subsequent
b sections.

¢

R '-.;.
N 6.2.1 The White Measurement Noise Model
T Let
=~
[ Y

o _ pi(t) = Prip(t) =i | y(1), 1<t] (6-4)
SR
:Q: Then from standard results in nonlinear filtering [13], we have that
o -
- @
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dpy(t) = [(-A1 - epp)p1(t) + A2 pa(t) + eup p3(t)]de
+ g(e)(a - h(t)] py(t)[dy(t) - g(e) h(t)dt]
dpa(t) = [Ap pr(t) + (-2 - euﬁ) p2(t) + ep4 p4(t)]dt
+ g(e)[B - h(t)] pa(t)[dy(t) - g(e) h(t)dt]
dp3(t) = [eu1 p1(t) + (-A3 = ep2)p3(t) + X4 ps(t))dt
+ g(e)|[a - ﬁ(t)] p3(t)[dy(t) - g(e) g(t)dtl
dps(t) = [ep3 p2(t) + A3 p3(t) + (=x4 - epg)ps(t)]de

+ g(e)[B - h(t)] p4(t){dy(t) - g(e) h(r)dt]

where

h(t) = a[p1(t) + p3(t)] + Bpa(t) + ps(t)] .

(6-5a)

(6-5b)

(6-5¢)

(6-5d)

(6-6)

As in Marchetti's work, it is quite useful to transform coordinates to high-

light explicitly the aggregate variables of interest. In this example, one

can give simple explanations for the several variables that arise.

cally, let
pL(t) = p3(t) + po(t)
pR(t) = p3(t) + ps(t)
A2
§1(t) = p1(t) -';—j:—;; pl(t)
1
WA
§2(t) = p3(t) - ;;—:fx— pR(t) .
4
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!‘i';l'
'\-".'.': ;_;, Here pl(t) and pR(t) are the probabilities of being on the left and right,
B :;.‘- ui"'
"': ' respectively. Also, &§;(t) is the deviation between the exact probability of
0‘-..’ .
: E being in state 1 and its approximation obtained by multiplying the probability
N v -
:*:: of being on the left by the steady-state probability of being on the top given
:_:_: o the process is on the left and no left-right tramsitions can occur. An anal-
St
¢ ) LY ogous interpretation can be given to §2(t). Note that one might expect §1(t)
:::':: " and §2(t) to be small since the process essentially can reach steady—~state
I
0 ::: between left-right transitions.
"-" ~
If we transform variables according to Eq. 6-7 and eliminate pR(t) by
'_?'..-::' ::'-.‘ replacing it by 1 ~ pl(t), we obtain the following set of three coupled sto- ;
N 1
‘_::-_': . chastic differential equations for the exact optimal nonlinear filter: |
-‘_\"N". :, :
e
. dpl(t) = elyz = (v1 + v2)pl(r)]de + e[-ny §1(t) + ny 62(t)]dr
R - 6-8a
ol + g(e)[£L - h(©)] pL(E)dv() + g(e) A81(E)Av(E) (6-82)
'\ ,Q d8y(t) = -Ay 8§1(t)dt + e[ng - n3 81(t) + (ng4 - n5)pL(t) + ng 8p(t)]dt
e A (6-8b)
WO + g(e)[g) pl(t) + g9 §1(t) - h(t) 61(t)]dv(t)
e
A L
=t d8o(t) = —Ay 82(t)dt + e[ng - n7 82(t) + (n1g = ng)p=(t) + ng §(t)]dt
o ! L - (6-8c)
P + g(e)[e3 - £3 pu(t) + &4 82(t) - h(t) 82(t)]dv(t)
'-:?‘-
[
:ﬁ: "_' where
LS -
* . dv(t) = dy(t) - g(e) h(t)de (6-9a)
EN R
:::-. .
(o h(t) = fg + (fy - fg) pl(t) + a[81(t) + 62(t)) (6-9b)
N :}
'.‘
A and the various constants appearing in Egs. 6-8 and 6-9 are
for's e
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aks

:' ’h,,: !
:::::' . A = a-~-8 AL = A1 + A2
LY N
SN
o
5' ; A2 = A3+ A4 np o= oup -~ W3
e
N ’
st up AL+ a3 A
nh‘ 4'.' n = U - U n =
.'-7:" ': 2 2 4 3 A1 + A2
l‘d LIPS
all a2 - i
oo 1 A2(u3 = uy) 2 AL A4 T ou4 A2 A3
oo ng = ng =
oyt (A1 + A2)? (AL + A2)(A3 + A3)
o e,
SN
B2 AL+ oug A2 w2 A3+ oug A4
w7 “ n = ny =
I ° AL+ A2 A3+ A
.rt#f )
Pt
pal o A3 A2(ug = wu2) Ul A3+ w3 Ay
d ‘ ng = ng =
NN (33 + a4)? A3+ A4
'(CRATRAY (6~-10)
-"'-"’ -“'
RN a
::" HL A2 A3 = u3 AL A4 Ap A2(a ~ B)
s no = L T,
‘ ] (‘ (A1 + 22)(x3 + Ay) (Aqp + A9)
7 Eg = —_— £y = —_
Dy ¢
Y|
A -
-“"_‘: . El& = —_—_— Yl -
S A
N A3+ Ay A1 + X2
K
® »
SN Ay w2 + A3 g Al B+ A2 a 1
MO Y2 = fr = ——
NN ? A+ Ay L SELY. |
b; . T B VAR
- % f = —_—
.:-:: - R A3+ Ay
AL s
..b- ' .
s . Covat | o o
COCHIER Note that the innovation dv(t) in Egq. 6-5 1s a standard Brownian motion.
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Since we will be focusing on the estimation of the slow left-to-right
transitions, it is useful to change time scales to that at which these tran-

sitions occur, i.e., we will make a change of scale of the form

thew

told = (6-11)

€

Performing this change of scale on Eq. 6-8, with care taken in accounting for

the quadratic variation of the innovations, we obtain the following

dpl(t) = [y2 = (y1 + v2)pM(t)])dt + [np §2(t) - np §;(t)]dt
(6-12a)
g(e) - g(e)
+ —— [fL - h(t)]pk(t) dw(t) + —— 48)(t) dw(t)
VY € /Y €
M
d81(t) = - — §1(t)dt + [ns - n3 §1(t) + (ng = ns)pl(r) + ng 62(t)]de
€
(6-12b)
g(e) R
+ —— [£1 pL(t) + g 61(t) - h(t) 61(t)]dw(t)
Y €
A2
d6p(t) = - — 6z(t)dt + [ng - ny 82(t) + (myp - nglpk(t) + ng 61(c)]de
(6-12c)
g(e) R
+ —— [£3 - £3 pL(t) + €4 69(t) = h(t) &(t)]dw(t)
v €

where dw(t) is a standard Brownian motion representing a scaled version of
the innovations.

We now turn our attention to the description of two different approxima-
tions of the optimal estimator. Both are based on the fact that at the slow
time scale the left-right transition behavior is approximately that of a

2-state Marxov process [29]. Specifically, consider the time-scaled 4-state
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process p(t/e). Over any interval At, this process undergoes numerous (indeed
infinitely many as € + Q) top-to-bottom transitions. This suggests two impor-
tant approximations. The first is that if we aggregate away these very fast
transitions, we will be left with a two-state Markov process. Specifically,

let

(L if p(t/e) =1l or 2
q(t) = (6-13)
é R if p(t/e) = 3 or &4 .

Then, as shown in {29], q(t) is asymptotically a 2-state Markov process with
transition behavior depicted in Fig. 6-2. Here the rate y] represeats a
weighted average of the left-to-right rates pj and y3 in Fig. 6-1, where the
weights equal the ergodic probabilities of being in states 1 and 2 when we
neglect left-to-right transitions (i.e., the fast top-to-bottom transitions
essentially reach equilibrium before a transition from left to right occurs so
that the rate of such a transition can be computed by this weighted average).

Obviously, there is an analogous interpretation for yj.

1y

1o
R-5559

Figure 6-2. The 2-State Aggregate Process

The second approximation is based on the fact that over time interval At,
the fast top-to-bottom transitions have a similar averaging effect on the

observations, i.e., that we can model our observations as

dy(t) = gle) f(q(t)jdt + dv(t) (6-14)
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o
¥ . where
,\_\:‘ ‘_:.
oA £(L) = f;, , f(R) = fg (6-15)
N
. [1 .
R R again represent averages.
\'_’_\
:'{: The resulting nonlinear filtering equation in this case is given by
SRS
'-'_\

dpr(t) = elyz = (y1 + v2)pL(t)]dt + g(e)[fy ~ h(t)}pL(t)[dy(t) - g(e)h(t)dt]

.9 .
" S
-
Ay ]

. - (6-16)
":j‘- “r where
h h(t) = fg + (fL ~ fr)pL(t) . (6-17)
'- I.\
.\':, -:::
O Comparing Eqs. 6-16 and 6-17 to Eqs. 6-12 and 6-9, we see some important sim-
‘{; j\ ilarities. 1Indeed, if §) and &) were replaced by zero in Egs. 6-9 and 6-12,
‘ 2
® : ) .

= the equations in fact become identical. One might conjecture then that under
R
e the right circumstances, Eqs. 6-16 and 6~17 would be an excellent approxima-
'%i' . tion to the optimal estimator of the slow variables. The analysis and simu-
¥

L

l-_ { lation results in the following sections show that for measurements with a
P

X

N particular range of signal-to-noise ratios, as characterized by g(e), this
o -

. is in fact the case.

#

By ¢ : .
e - It is instructive to examine the architectural implications of the
o
‘ifj ‘ approximation we have just described. In Fig. 6-3 we have depicted the
N

TR architecture of the optimal estimator, in which there are both fast and slow
; -

- - variables, while in Fig. 6-4 we have the much simple (pictorially and computa-
f:é} ) tionally) approximate estimator. In this estimator we are in essence taking
f}; j; advantage of the slow py, dynamics to average out the effects of the fast fluc- !
» e - |
@

-_? tuations in the data. 1In fact this also suggests a related approximation.
e In particular, since the approximate estimator has no fast variables, its
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dy(t) +
=

r

'

Slow Variable

p (1)

Pt
>

Figure 6-4.

digital implementations can use a far larger step size.

is the structure depicted in Fig. 6-5.

h(t) Calculation

—

R-5561

Architecture of the First Approximate Filter

. L
Fast Variations Slow Variable p (1)
8,(1). 8,(t) ) —
1\ O, — p (1)
h
A
g(e)hnat h(t) Calculation |«
R-5560
Figure 6-3. Architecture of the Optimal Filter

What this implies

Here the front-end preprocessor per-

forms an averaging of the observations over a time interval that is long with

respect to the fast variables but short with respect to the slow variables.

The back-end processor then uses these averaged values in a sampled data

approximation of Eq. b-16.
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dy(t . AY,
y(t) Front-End K

+ Slow Variable P (Y)
>

*@ o, (1) -

Averager

H(f.) Calculator 4______J

Digital Back-End (Low Sampling Rate)

Figure 6-5. A Front-End/Back-End Structure Based on the Approximate
Filter in Fig. 6-4

It is also possible to describe a considerably different front-end/
back-end structure for an approximate estimator. This structure is motivated
explicitly by passive acoustic tracking architectures in which the front end
uses a batch of data to estimate slowly~varying quantities —-- bearing, fre-
quency —- based on the assumption that these quantities are constant over the
time interval of observation. The sequence nf estimates produced by the front
end then are used as measurements by the back end which attempts to track
these slowly varying quantities.

In our present context, a structure of this type would have the form
depicted in Fig. 6-6. Here the front—end uses a batch of data for
kT(e) < t € (k+1)T(e) to perform an hypothesis test —— is the processor on
the right or the left -- based on the assumption that no left-to-right transi-
tions can occur, i.e., on the model depicted in Fig. 6-7. The sufficient sta-
tistic for this hypothesis test can be taken to be either Py, the conditional
probability that the process in Fig. 2-7 is on the left, or the likeli*ood
ratio
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Figure 6-7. Model on Which the Front End of Fig. 6-6 is Based

w‘. ,"’:
S Py,
. . , L= ——— . (6-18)
L ﬂh:' 1 - PL
_.) {r‘ The computation of Py is a nonlinear filtering problem analogous to the one
Ry~ M
b described previously -- i.e., by getting the pj = O in Eq. 6-5, letting
2
Lo :)
. <
2 PL = (p1 +P2) » PLT =Pl > PgT = P3 (6-19)
::t . and replacing py by Py, - PyT and p4y by 1 - P, — PgT, we obtain
1)
Yo
LY Y -~ - A~
o ;5 dPp(t) = g(e)[hL(t) = h(t)]PL(e)[dy(t) — g(e) h(t)dt] (6-20a)
'.; '
::.'; iy dPpp(t) = [-Ap Ppp(t) + xp(Pp(t) - Prp(t))jde
Ty =
S ~ -~ 6-20b
o + g(e)(a - R(OIPLI(E) [dy(e) = g(e) h(erae] (67209
¢ e
] s
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-::, dPR(t) = [‘X3 PRT(C) + X4(1 - PL(t) - PRT(t))]dt V i
LY ; ~ ~ - O :
+ g(e)la = h(t)]Ppr(t)[dg(t) - g(e) h(t)de] (6-20¢)
B H
) where
h(t) =8 + (a - B)(PLp(t) + Prp(t)) (6-21a)
4] - PLr(t)
N hy(t) =8 + (a = B) —— (6-21b)
- PL(t)
& N
i; Here hp(t) is the expected value of h(p(t)) given the data and assuming that
- the process is on the left.
r:\
e Several alternate forus of these equations are also of potential value
- both in providing insight and for their potential computational simplicity.
e
First we define the conditional probability of being in state 1 and state 3
:5 given the data and assuming that the process is on the left and right,
. respectively:
‘-l
[¢
PLT PRT (6-22)
Q T = — = —— - -
LT = 5, QT = T P
4 An application of its differential rule [8] then yields
&
dPL(t) = g(e)[hp(t) - h(r)]PL(t)[dy(t) - g(e) h(t)dt] (6-23a)
- dQrp(t) = [x2 - (A1 + A2)Qup(t)]dt
S . ~ 6-23b
+ g(e) (a - h(e)aLT(e) (dy(e) - gle) h(eyae) O3
;: dQrr(t) = [A4 — (A3 + A4)Qrr(t)]dt
iy - 6-23c
+ g(e) (a - hR(E))Qrr(t) (dy(t) - g(e) hp(ryar) (6723
_ where
a
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= hi(t) = 8 + (a = B) Qur(t) (6-242)
' ‘A\R(t) =8 + (a - B) Qurr(t) (6~24b)
- h(t) = hp(t) Pr(t) + hp(t) (1 - Pr(t)) - (6-24c)
RN

Note the decoupled structure of these equations as depicted in Fig. 6-8, where

1%

e we have used the fact that

> dv(t) = dy(t) = g(e) h(t)dt = Pr(t) dvp(t) + (1 - Pr(t)dvg(t) (6~25a)

where

I~'.‘j dvgp(t) = dy(t) - g(e) hg(t)dt , dvp(t) = dy(t) - g(e) hp(t)de (6-25b)

YQ.'

N Note also that unlike the exact nonlinear filter (Eq. 6-5), these equations

) do not involve variables at 2 time scales and thus can be integrated more

5 efficiently.

Yet another useful form can be obtained using the likelihood ratio

i (Eq. 6-18):

- dL(t) = g(e) (h(t) - hg(t)) L(£)d.g(t) (6-26a)

= dQpr(t) = [Ag = (Ap + A)Qur(t)]dt + g(e)(a = hp(e))Qur(t) dvi(t) (6-26b)
R dQrr(t) = [A4 = (X3 + A4)Qprr(t)]dt + g(e)(a = hp(t))Qpr dvr(t) (6-26¢)
:f: T Note that these quations are somewhat simpler than the preceding set since we
a4
- @ do not need to compute dv(t). Taking this one step further, if we let

i 2(t) = log L(t) (6-27)

;i
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Figure 6-8.

The Architecture of the Front-End in Fig. 6-6
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i~ then
. 1 o ) " °
‘ de(e) = - — g2(e)[hp(t) - hr(t))2dt + gle)(h (t) - hp(t)]dvr(t)  (6-28)
- which is just a simple accuumulation:
u (k+1)T(€)
L((k+DT()) = L(kT(e)) = —— g2(e) | (hp(£) - hp(t)]2de
kT(€)
(6-29)
(k+1)T(¢e)
+ g(e) | [b(t) - hp(t)]dvg(t)
Ef kT(e)
B Let us comment on the choice of initial conditions at the start of each
~ interval. A natural set of choices are
A2 - M
Qqr=—"""" Q@r=__—__ (6-10a)
. A1 + A2 A3 + X4
. ard the following equivalent conditions
1
pp=—" , L=1 , 2£=0 . (6-30b)

|' 2

Equation 6-30a corresponds to assuming that the fast process is in equilibrium
when we begin an observation interval. Equation 6-30b corresponds to no prior
b information, i.e., no feedback is provided from the back end in Fig. 6-6 to

front end.

"’
R Finally, at the end of each interval, we perform a threshold test. 1In
.. terms of ¢, this is

z

a
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M+ = L
> (6-31)
L[(k+1)T(e)] 0
<
M+l + T

where "L" and "R" are the two values of the observational input to the back
end in Fig. 6-6. The back end is then simply a sampled data estimator of the
2-state process in Fig. 6-2, with measurements provided every T(e¢) time units.

We can characterized the performance of the front end in terms of 2 quantities

Prob[my = L | process on the left] (6-32a)

¢LLCE)

¢r(e) = Prob[my = L | process on the right] (6-32b)

We explicitly write these as functions of ¢ to indicate that the performance
of the test (Eq. 6-31) depends upon the size of the time interval. Note,
however, that these performance measures only make sense fcr T(e) small with
respect to l/e so that the process actually is very likely to stay on the left
or on the right over the entire interval.

Given the quantities in Eq. 6-32, the optimal back end can be described

as follows. Let

pr (k| j) = Prob[process on left at time kT(e) | mg , s < j] (6-33)
then
Y2
~(Y1+Y2)T -(y1+y2)T
Y1l Y2

and 1if me4q =L
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NG ¢LLle)pr(k+lk)

o PL(k+1|k+l) = (6-35a)
sLL(e)pL(k+l|k) + ¢pr(e) [1 = pp(k+l|k)]

’. while if m+1 = R

. (1 - ¢rr(e)]pL(k+l|k)

. pL(k+l|k+1) = (6-35b)

[1 = ¢rL(e))pLlk+lik) + [1 = ¢pr(e) ][l ~ pr(k+l]|k)]

"
K The evaluation of ¢11(e) and ¢y r(e) are therefore essential both to define the
i update step (Eq. 6-35) and to evaluate its overall performance and asymptotic
.; properties. A key question here involves the relationships among the time

E: scale separation controlled by €, the rate at which information is obtained

o controlled by g(e), and the data collection interval T(g).

r

We note that it is also possible to define a slightly different front-
end/back~end structure in which we eliminate the hard decision (Eq. 6-31) in

the front end and instead take as input to the back end the likelihood ratio

Lk = L(kI(g)) . (6-36)
B Note that for T(g) small with respect to 1/¢ and with an initial condition of
. I on L at the start of an Iinterval, Ly is approximately equal to

Pr [(data over [(k-1)T(e),kT(e)) | process on the left]

Pr [data over [(k-1)T(e),kT(e)) | process on the right]

- for the true process. This suggests the following back end algorithm. The

prediction step is still given by Eq. 6-34. The update step, however, is

4

given by
‘N
I Lit1 ppL(k+l k)
) pL(k#1|k+l) = : (6-37)
- : Li+1 PLCk+L[k) + (1 - pr(k+l]k))
EE
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Finally, we note that we can combine our two types of approximations to
obtain a far simpler one. Specifically, suppose we model our observations as
in Eq. 6-14 by assuming an averaging effect. Writing these in the original

time scale

dy(t) = g(e) £(q(t))dt + dv(t) . (6-38)

Then if our front end assumes no left-to-right tramsitions, we obtain

dpL = g(e)[fr - h(t)] prL(t)[dy(t) - g(e) h(t)dt] (6-39)
h(t)= fg + (fL - fR) pL(t) . (6-40)
If we define
pL(t)
L(t) = ——m (6~-41)
1 - pr(t)
we obtain
dL(t) = g(e) (fy, - fRr) L(t)[dy(t) - g(e)fgrdt] (6-42)
or if
2(t) = log L(t) (6-43)
then

da(t) = —%H g2(e) [fL - £rlde? + g(e) (£, - £p) [dy(t) - g(e)frdt]
(6-44)

da(t) = —},— g2(e) [£g2 - £12) + g(e) (f - £R)dy(t) . (6-45)
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R S

This leads to the following algorithm: use Eq. 6-34 for the prediction

step and Eq. 6-37 for the measurement update, with

L = etk (6-46)

. (k+1)T(E€)
L = — g2(e) [fg2 - £1L21T(e) + 8(e) [fL - fr]) [ dy(t) . (6-47)
2
kT(e)

Note that the basic processing step in the front end is exactly a simple aver-

aging of the measurements.

6.2.2 Perfect Measurements with Small Differences in Rates

In this case, since we directly observe whether the process is on the
top or the bottom, the exact filtering equations involve only pp(t), the prob-
ability of being on the left. To facilitate our development, we introduce a

process indicating the top-bottom status of the processor

]
—

1, p(e) or 3
x(t) = (6-48)
0 , o(t) or 4 .

]
[

Then, using the analysis in Appendix B we have the following description of

the evolution of pp(t):

While x(t) =

pL(t) = eup = eCup + up) pL(t) + (A3 = Ap) pL(t)[l = pp(t)]  (6-49a)

Wwhile x(t) =

éL(t) = egpg4 — e(uy + pg) prL(t) + (A4 = A2) pr(e)(l - pp(t)] (6-49b)
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When x(t-) = 1 and x(t) = 0
A1 prL(t-)
= 6-49
P = BT T A et + 15 (emie)
When x(t-) = 0 and x(t) =1
A2 pL(t-)
pr(t) = . (6-49d)

(X2 = Ag) pr(t-) + X4

These can be combined into the following stochastic differential equation

where we also use Eq. 6-3:

dpp(t) = [eup - e(uy + w2) prlt) = ag(e) pr(t) (1 - pp(r))]x(t)de

+ {eug — e(uy + ug) pr(t) + Bgle) pr(r) (1 — pp(e))][l - x(t)]dt

ax(t) B{1-x(t)]
+ g(edpp()[l-pr(t)] - dx(t)
Atag(e) [L-pr(t)] A2+Bg(e)[1-pL(t)]

(6-50)

Two alternate forms of these equations provide additional insight. First

note that

Eldx(t){x(1), t<t] = =x(t)[Ap pr(t) + A3(1l - pp(t))}dt

+ [1 = x(e)] {x2 pp(t) + x4(1 - pr,(r))]dt

—x(t)[Ap + ag(e) (1 - pr(t))] (6-51)
+ [L - x(t)] [xp + Bg(e) (1 - pp(t))]

ﬁ(t)dt

lle>
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Using Eqs. 6-3 and 6-51 we can rewrite Eq. 6-50 as

dpp(t) = eluz = (u1 + w)pp(t))x(e)dt + elug - (u3 + py)pL(e)j(1 - x(v)}de

ax(t) Bl1-x(t)] -
+ g(edpp(t)[1-pr(t)] - (dx(t)-h(t)dt)
Atag(e) [1-pr(t)]  xp+Bg(e)[1+pL(t)]
(6-52)
A second important form involves two derived quantities
R(t) = Total residence time of p(t) 0<1<t on the top
(i.e., in states 1 or 3) . (6-53)
K(t) = Total number of changes in x(t) over O0<1<t .
Then
dR(t) = x(t)dt
(6-54)
dK(t) = ldx(t)| = =x(t)dx(t) + [1-x(t)]dx(t) = [1-2x(t)]dx(t)

Note several equalities

x2(t) = x(t) , [l=x(t)}? = 1-x(t) , x(t)[l-x(t)] =0

[1-2x(t)]2 = 1 , =x(t)[1-2x(t)] = -x(t) , [l=x(t)]{1-2x(t)] = l-x(t)

(6-55)
Using Eqs. 6-50, 6-54, and 6-55 we obtain
dpp(t) = [eug = euz + pg)pp(t) + Bg(e)pr(t) (1 - pp(t))ldt
+ [eCup = ug) = eCuyp + up - u3 - ug) pL(t)
+ (a=B) g(e) pp(t) (1 - pr(t))]}dR(t)
- 5(£)pL(E) [1-pL(E)] sk R Land dK(t)
Mtag(e)(1-pp(e)]  x+Bg(e)[1-pL(t)]

(6-56)
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Equation 6-56 suggests one straightforward front—-end/back-end decomposi-
tion. Specifically, because of the slow dynamics in Eq. 2-56 one can imagine
a system of the form depicted in Fig. 6-9. Here the front end performs a
simple accumulation, computing AR and AK over an interval of time that is long
with respect to the fast dynamics and short with respect to the slow dynamics.
These quantities are then fed into a sampled version of Eq. 6-56.

One can also envision two other, more sophisticated froant—end/back-end
approximations to Eq. 6-56, each of which is analogous to one of the forms
described in the preceding subsection. In the first of these, depicted in
Fig. 6-10, we perform a front-end hypothesis test whose results are fed into
a back-end slow estimator. Comparing Figs. 6-6 and 6-10, we see that there is
a difference in that the slow estimator uses both the hypothesis test results
and the raw data x(t). To understand this, it is important to realize that
x(t) provides us with two types of information: the indirect information
about whether p(t) is on the left or right that is embedded in the switching
behavior of x(t) and the direct information concerning which left-to~right
rates == y) and pp or p3 and p4 -- are in effect. 1Indeed, consider the two-
state process depicted in Fig. 6-11. The evolution of the unconditional prob-

ability of being on the left for this process is given by

dpr(t) = = [eprx(t) + en3(l-x(t))]pr(t) + [eupx(t) + eus(l-x(t))][1-pp(t)]dt
= [cug = =(uztpgdpp(e)]de + [e(up = wg) ~ eCuptuz-uz~pa)pp(t) JdR(c)
(6-57)
Compare this to Eq. 6-56. Note that the remaining terms in Eq. 6-56 -- i.e.,
those not captured in Eq. 6-57, yvield the equation for the conditional proba-
bility of being on the left given the data and assuming no left-to-right

transitions nccur:
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AR
X(t) Front-End K Digital P (1) I
. Accumulator AK ' Back-End B
k
R-5566

Figure 6-9. Front-End/Back-End Structure Arising from Slow Integration
of Optimal Estimator

y

x(t) Front-End Batch m, . p (1)
Hypothesis Tester ——— Slow Estimator }———#»

R-5567

Figure 6-10. Hypothesis-Testing Front End with Slow Back—End Estimator

L x(0) + 1, (1% (1)

sz(t) + ll4(1 'X(t))

R-5562

Figure 6-11. The Left-Right Transition Rates
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Py
09
"
-
»
)

ey}
}',, 3 dpr(t) = Bg(e)prL(t)[1l-pr(t)}dt + (a-B)g(e)pL(t)(1-pL(t)]dR(L)
<
M ax(t) B[l-x(t)]
~ gle)pr(t)[1-pL(t) + dK(t) .
0 - Artag(e) [1-pr(t)]  Az+Bg(e)[1-pL(t)]
L} ) L.~
.S t:: (6-58)
') Equation 6-58 can in fact be solved in closed form, as the sufficient
-‘):‘_:‘ hds statistics in this case are essentially R(t) and K(t). Specifically, let
o
S
;:::. }‘-; D(t) = Number of top—to-bottom transitions up to time t
(6-59)
‘:, ﬁ U(t) = Number of bottom—to-top transitions up to time t .
4 Note that
0‘.'. 8.}
32 : K(t) = D(t) + U(t) (6-60)
)
‘-;': <
“'_:: ’;_1. and 1f x(0) =1
rl
i

il

S

D(t) =l7£;—tl_" » U(0) =L§-§Q-J (6-61a)

1.; .;:.

NN while if x(0) = 0
s

J &
X 0 D(t) =l}<-(—QJ » U(t) = K(£) (6-61b)
\ 2 2

W

Y n

I!' \'*

5:,'. e where

A

‘_ e I x 7] = smallest integer » x
i (6-62)
.-‘ . | x | = largest integer < x

T : Def ine
;‘ ::. u(t)
- ‘-t'). D(t) t
‘E L(t) = e~Bg(e)t o(B-a)g(e)R(t) (1 + ag(E)) (1 + Be(e) ) . (6-63)
N ) ;? ) Al A2
a ’
n
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Ry Then L(t) is the likelihood ratio

A Pr(x(t), 1<t | p(t) on the right)
) g L(t) = (6-64)

;.;t.. Pr(x(t), 7t<t | p(t) on the left)

L)

L 4

:: , o assuming that no left-to-right transitions can take place. 1In this case, it
d

&y

is easy to see that

2]
~ )
L

i ) pL(O) (6-65)
1508 pL(t) = ° -
0 L pL(0) + [1-pL(0)]L(t)

{
22
’-’)

It is a straightforward exercise to verify that Eq. 6-55 satisfies Eq. 6-58.

e
-
ZZA

3:; We can now describe precisely the front-end/back-end structure depicted
,(‘1'. V
:::::: ﬁ in Fig. 6-10. Again, let (k-1) T(e) < t < kT(e) denote the k-th batch of data
T for the front-end processor, and let
Bt
W I
9
! Ric = R(KT(e)) = R[(k=1)T(e)] (6-66a)
o D = D(kT(e)) - D[(k-1)T(e)] (6—-66b)
s
oo i
[l
_,;: ‘f(‘ U = U(kT(e)) - U[(k-1)T(e)] (6-66¢c)
o".f'a
J
o Kp = K(kT(e)) - K[(k-1)T(e)] (6-66d)
aul
;:s :-\-‘\‘ Lgy = likelihood ratio based on (6-66e)
.'J I~ the k-th batch of data
o »'f'
b‘ u._‘ i.e. y
B2
'y *
» ) _ _ ag(e) \ Dk Bg(e) \ Uk
;' 5: L = e Bg(e)T(e) (B-a)glelRy ((, 4 281€) 1+ . (6-67)
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The frout end then produces an output based on the decision rule

mk=R
> 4
Ly 1 (6-68)
<
m = L
Also let
pL(klj) = Prob{process on left at time kT(e€) |ms, s<j] . (6-69)

The prediction step of the algorithm consists of integrating

ﬁL = = [euyx(t) + euz(1l-x(t))]py,
(6-70)
+ e[uox(t)+e(1-x(t))]}(1-py,)

from t = kT(e) to t = (k+1)T(e) using as initial condition pp(k|k). The

update step is then

oLL(e) prL(k+l]k)
pL(k+l|k+1l) = (6-71a)

orL(e) PL(k+1|k) + ¢y gl1-pr(k+l]k)]

if m¢ = L , aund

[1-¢rL(e)] pL(k+1][k)
pr(k+l|k+l) = (6~71b)

[1-¢rL(e) IpL(ktl k) + [1-¢pr(e) ] [1-pp(k+1|k)]

if m¢ = R, where ¢y1] and ¢;g are defined in Eq. 6-32. We note that in this
case it is possible to carry out some of the analysis associated with these
quantities, and this {s done in Appendix C.

Note that in general the exact computation of the prediction equation

(Eq. 6-70) involves the complete x(t) sample path —- essentially we are

switching between two sets of rates, i.e.,

89
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. = e[A] x(t) + Ap[1-x(t)]] (6-72)
pr(t) . pr(t)

4
ﬁ pL(E) PL(E)
R

\ where
2
-
“ul w2 “u3 4
Ay = y Ap = . (6-73)
§ 1 T2 U3 “u4
R
o If
* ur/uz = u3z/ug (6-74)
o
i.e., if the steady-state probabilities assoclated with A; and A are the
g same, then Ay} and Aj commute and the solution of Eq. 6~72 involves only the
F{ integral of x(t), namely R(t). If Eq. 6-74 does not hold, this isn't true
’Y,
- exactly, although for e€T(e) small, the difference between the solution to
i§ Eq. 6-72 at t = (k+1)T(e) from initial condition pr(k|k) at t = kT(e) and the
approximation
b »
5
pLk[k)
G (1,0] exp{eA] Ri+l + eA2(T(e) = Rgs1l} (6-75)
. 1-pL(k|k)
'.\
o~
-~ is 0(:»:2 Tz(e)). If this is ignored, we can use Eq. 6-75 which in expanded
::_1 form is as follows:
- T + R
nogn pL(k+l k) = e €L¥1 TCE) + 92 Rl ()
Y s, -& (6—76)
On - T + R
- [ua T(e) + (Ul'U:})Rk-O-]_][l - e €[¢'1 (€) ¥2 k+1]]
.;;. e +
S paN ey) T(e) + e¥2 Ryl
¥
R
o 90
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B

where

s

Y1 = w3 tuws o, V2 =wuptoup-ou3z-ou . (6-77)

by

Note in this case that only Ry4], and not the entire x(t) sample path, is used

5

by the slow estimator.

{2~

Finally, as in the preceding subsection, we can replace the hard decision
rule (Eq. 6-68) by a Bayesian update. In this case, the front end again cal-

culates Ry, Dy, Uy and Ly as in Eq. 6-67. The back end then performs a pre-

E L=

diction step using Eq. 6-70 or the simpler (and exact if Eq. 6~74 holds and

otherwise approximate) version (Eq. 6-76) and a measurement update step of the

‘and

~roy

following form:

pL(k+1|k)
PL(k+l [k+l) = . (6-78)
pL(k+l|k) + [1 = pp(k+l|k)}Lyg+y

=

KA 4

AR

AL

|1

91

SEN

§

"
N »
h ._‘!‘,‘l"‘ W

N
ST




B ALPHATECH, INC.

[ >
g
;"Q 1] LY
)
e
o ﬁ
ﬁ?f SECTION 7
&5‘ ",
nr,
o ASYMPTOTIC ANALYSIS
[t /
B
) N
‘:&H &‘" In this section we present some results on the asymptotic analysis of
’ +
&
o&&. . the white noise filtering problem described in subsections 6.1.1 and 6.2,1.
R W
Y
gh: & To facilitate the analysis, we repeat the key equations here in somewhat more
w‘: ;: compact form. In Eqs. 6-8 and 6-9 we presented the exact optimal filtering
GO
:&ﬁ equations in a particular set of coordinate, while in Eqs. 6-16 and 6-17 we
i
5* 5
2& ai presented the corresponding equation for a particular aggregate approximation.
SO By eliminating dy(t) in Eq. 6-16 through the use of Eq. 6-9a, we obtain the
- P:'
;? X he following:
o
‘D“!.. 1
[3 dpl(e) = ea(ph(t),51(t),62(x))dt
,5;# (7-1a)
3,'1"-" " + g(e) B(pl(t),61(r),62(t))dv(t)
'
en g
o dpr(t) = eA(pl(r),0,0)dt + g(e) B(pL(t),0,0)dv(t)
) (7-1b)
oy + g2(e) c(pLle)pl(r),81(t),8p(c) )de

L
O d61(t) = -Ap 61(t)dt + ep(pl(t),s(t),8(t) )de
My (7-1c)
o + g(e) F(pl(t),8;(t),82(r))dv(t)
i
b déa(t) = -Ap &z(t)dt + eG(pl(t),61(t),62(t))dt
ST (7-1d)
' + g(e) J(pL(t),61(t),82(t))dv(e) .
ii where dv(t) in Eq. 6-9a is a standard Brownian notion and where
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N A(pl,81,62) = vy2 - (yp +Y)Pl - np &1 + np & (7-2a)
E B(pL,61,62) = [fL ~ H(pL,61,682)]pL + A6 (7-2b)
. H(pL,681,62) = fg + (fy, - fR)pL + A[6] + 682] (7-2¢)
o

C(py,pl,81,82) = [fL - H(pp,0,0)]py (H(pL,0,0) - H(pL,81,62)] (7-24)
3

D(pL,81,62) =1n5 - n3 81 + (ng - n5)pl + ng &2 (7-2e)
¥

: F(pl,81,62) = g1 pl + &2 81 - H(pL,61,62)61 (7-2£)

&
" G(pL,61,82) = ng - n4 82 + (n1o - ng)pl + ng & (7-2g)
ﬁa J(pl,681,62) = g3 - €3 pb + &4 63 - H(pL,87,62) 62 (7-2h)
i; Note that the aggregate approximate probability pp, is now coupled to the exact
l)-

quantities, as we want to write all equations in a form driven by the true

ral~

innovations.

What we show in this section is that the approximate filter (Egs. 6-16

o
v and 6~17) is a good one, in that
fe
L] L - -
» q(t) = p(t) - pr(t) (7-3)
:: is small compared to the amount of information contained in pL or pr,. More
" precisely, let
-._' Yz
u(e) = pl(t) = ——— = pl(e) -y . (7-4)
. Y1+ v2
\"
3a
s Then u(t) is precisely the deviation of plL(t) from its steady-state value if
~
- no measurements were available. We essentially show that q(t) is quite small
&
> 93
A,
f.-.
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:3 in relation to u(t). In preparation for a precise statement of this type,
b\,
we transform variables in Eq. 7-1 using Eqs. 7-3 and 7-4 and also change to
‘ the slow time scale. The result is the following set of equations on which i
our analysis will focus:
o
il g(e)
du(t) = - T p(e)de + K(8;(t),82(t))de + N(u(t),81(t),85(t) )dw(t)
€
g (7-5a)
=2 M g(e) '
" ds1(t) = - — §;(t)dt + P(u(t),8;(t),85(t)de) + Q(u(t), 8;(t), 82(t) Jdw(t)
) e .
he! (7-5b)
A2 g(e) ‘
ﬁ d6o(t) = - — 8o(t)dt + R(u(t),8;(t),8o(t)dt) + S(u(t),8;(t),69(t) Jdw(t)
€ vV e
(7-5¢)
P-'.
_\.
o 2
da(t) = - T q(t)dt + K(6;(t),62(t))de + E=CE) w(q(e),81(e), 65(t) Jdt
. €
i g(e)
+ B2 y(q(e),u(e),818), 82(e) )dw(e) |
~ e
< (7-54)
! where w(t) is a standard Brownian motion, and
W
::‘j r = vy + 2 (7-6a)
w
S K(681,69) = -1 81 + np &2 (7-6b)
7,
. M(q,61,62) = (fy, - fr)q + A(81 + &3) (7-6¢)
N(p,81,82) = [(fp = fr)(l=-y-u) - 4(8) + 82)][wHy] + 48 (7-6d)
h: =
b P(1,81,82) = ng - n3 61 + (ng = ns)(uty) + ng & (7-6e)
e 2
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f}- Q(u,61,62) = g1(uty) + €2 81 '
» (7-6f)
- [fg + (fL, - fR)(u+y) + 8(6) + 82)]6;
, R(n,81,62) = ng - n7 62 + (n1g - ng)(uty) + ng §; : (7-6g)
o
o S(u,61,62) = &3 = £3(uhy) + g4 63
(7-6h)
. - [fR + (fL - fR)(u‘HJ)) + A(Gl + 62)]62
2
.. U(q,u,681,82) = (ff, = fr)q[l-2(uty) +q) - ACSy + 82)(uty) + A8 (7-61)
S
B
Sj Theorem: Suppose yy; y2 # 0 and fy # fg. Further suppose that
- q(0) = 0 (i.e., pk(0) = p(0), and define
& 0 if  812(0) + 822(0) = 0
R tole) = 20 ) (7-7)
. 1 g4(e
' - — n otherwise .
T €
(
Suppose that g(e) = 0(61/2) and € = 0(g(e)), i.e.,
a
lim ggj; =0 , 1lim € exists . (7-8)
. ev0 € e+0 8(¢€)
- Then for e sufficiently small, there exists a positive
.'
i constant C so that
2 sup E[q2(t)]
tato(e)
5e < Ce¢ (7-9
- 2
, sup E[p4(t)]
t>T
~ for any T>0.
e
95
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o -

o
j? Let us make several comments about this result. First, the assumption
i" ” that y; y2 # O simply means that the 2~state aggregate process in Fig. 6-2 has
t
. '! a nontrivial ergodic distribution, while the condition fj # fg states that the
E; . aggregated version of the measurements does contain at least some information.
f: S: Also, from Eq. 7-7 we see that the need for ty(e) is due entirely to boundary-
‘:‘ layer effects caused by initial conditions on §)(t) and §3(t). Finally note
“J - that the assumption that q(0) = 0 is reasonable, as it certainly makes sense
e EE for the exact and approximate filters to be initialized identically.
. What this theorem states is that for measurement quality in the range
™
t : EZ specified by Eq. 7-8, the mean square deviation is order ¢ in size when com-
E:é :} pared to the mean-square information content as measured by p(t). The inclu-
* v sion of the arbitrary time T in Eq. 7-9 in fact implies that this information
ty
g\ ‘: content persists at a level far above that of the deviation q(t). Note also
LS

that as should be clear from the proof, this result can be extended to the

=

case of poorer measurement quality, i.e., g{(e) = o(e), with an appropriate

"

5: i change in che right-hand side of Eq. 7-9. The order 81/2, however, represents
~ -

el -

P a critical cut~off point at the upper limit of weasurement quality. This will
n

also be seen in the results presented in the next section.

L

A
.:4 -, Proof of Theorem: For notational simplicity in what follows, we will use
)
Pl .

-
s

simplified notation of the type

t<
wr R(t) = R(u(t), 81(t), 82(t)) (6-10)
-]
1’: ....'
7 Eg and will refer to the specific arguments of such a function only when neces-

sary. Also, let us note an extremely important fact: the processes for which

= ,- \v¢‘m-\v\- « .‘;“Q\'\'..:.:.\‘J
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e
[~ A

¥
Wi ‘ we are solving in Eq. 7-5 all represent differences between two probabilities,

DN

My i.e., we know a priori that

ko

ef" - luCe)|, 181¢e)], J62¢e)], |a(e)| <1 . (7-11)

;1;:’ .

Ko . Consequently, since the quantities in Eqs. 7-6b - 7-61 are all first- or
&

1%y

T A second-order polynomials in these processes, we see that they are a ounded,
) &; d-ord 1 ials i h h h 11 bounded

7% '

LS

i\: > i.e., there exists a positive mumber K < « so that

o

AR

SR ‘a

Ky Ik(e)[, [M(e)], INCe)|, [pCo)], la(e)], [R(o)], [s(e)], |ue)} <k .

o T ' 7-12
v . ( )
Cal ,

;;ﬁ - Our proof now proceeds by first bounding the sizes of §;(t) and §7(t),

o3 R
iy -

“ then q(t), and finally p(t). To begin, we note from Eq. 7-5b that

=

R -At/e b on(e-T)/e 8(e) & _pi(t-1)

s §1(t) = e §1(0) + [ e P(t)dt + —— [ e Q(r)dw(t) .

S e 0 € 0

o

Ty (7-13)

'5"‘ C{ Then, using the fact that
SR

"to M M

2 B (7 x4)2 <M x2 (7-14)

. - i=1 i=1

N

.}$ s we obtain
~n .
$'~ lhn

O -2Mt/e

L E[812(t)] < 3 e “TLVTE[612(0)}

O

R M- ] e

- +3 [ el E[P(1)P(0)]dtdo (7-15)

.j: i 00

y : g2(¢e) t -aa (t-1)/¢
¥ +3 2250 [ eTM E[Q%(1)]dT

B - 0

)

A

i~ - 97
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S
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Using Eqs. 7-11 and 7-12 we obtain

2
~2Ayt/ " -m(e-T)/
E[6,2(6)] < 3 e LY EE[612(0)] + 3 k2| [ eIV gy
g gt 0 ' (7-16)
R UGS TMCOTEN
€ 0
Then using the fact that
t _ _ t _ o 1
[ e Vg = [ e Tdr < [ e ¥ Tdr = — (7-17)
0 0 0 a
we obtain the bound
- 2.2 252
EL812(r)] < 3 E[6,2(0))e 2Nt/ 4 3 K06 3 Koa™(e) (7-18)
Ay 2N
In an analogous fashion, we obtain the bound
- 2.2 252
E(652(t)] < 3 E[§52(0)]e 2hgt/e | 3 Kfef | 3 Kgi(e) (7-19)

A22 29

Consider next q(t). From Eq. 7-5d and the fact that q(0) = 0, we have

t -r(t- 2 C o r(e-
q(t) = [ e re T)K(T)dr + 82(e) [ e r(e T)M(T)d't
€
0 0 (7-20)
t
o B8 Ty au(n)

e

Using Eq. 6-14, once again we obtain

98
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~ t e _ - -
o E[qz(t)] < 3 f fe r(e-m)+(e o)]E[K(T)K(O)]deO
00

! g4e) (F 5 -T(t-T)+(t-0)]

+ 325 [ [ e E[M(t)M(0)]}d1do (7-21)
; € 00
o t

+ 3 BAE) [ e 2 Dg y2 (1) 1dx
@ 0
. Then employing the inequality
" 1
0 lxy| ¢« — (x2 + y2) (7-22)
R 2
N we find
ii tt -T{(t-1)+(t-0))

E(q2(t)] <3 [ [ e E[K2(1)]dt
] 00
N 4 3 _
+ 3 848 [ TR D 52 (1) 4 (7-23)
. € 00
t

_ +3 ___g2§e) [ e 2T y2( 1) dr
.‘. 0
! Again using Eq. 7-17 we obtain

t
E[q2(£)] < -?— [ e T g k2 0y )dr
0

Ay

beey .t (-
+ 284e) [T g () e (7-24)
Te 0

b

2 t_ -
+ 3 87(e) [ e 2r(e T)E[Uz('r,‘]d'r
€
- 0

p

-
P -
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Let us now examine the first integral on the right-hand side of Eq. 7-24.

From Eqs. 7-6b, 7-14, 7-18, and 7-19 we see that

E[K2(t)] < 2 n;2 E[612(t)] + 2 n92 E[622(t)]

-2 At/e

< A) E[622(0) + §22(0)]e (7-25)

-At/e +

+ A ee Ay €2 + A4 g2(¢)

where A = min(Ay,Ap) and Ay, Ay, A3, A, are appropriate postive constaants.

Also, from Eq. 7-8 for ¢ sufficiently small*

E(K%(t)] < Ap E[812(0) + 522(0)]e'2At/€
(7-26)
¥ Ay e e MTE 4 pg 52(¢)
for same constant A5.
Using Eq. 7-26 we then have that
b or(t-1)
[ e T E[K2(1)]dt
0
-Tt _
< [AT{E[612(0)] + E[622(0)] + Age} e (1 - (T A/E)t)
2A-€T (7-27)
As g2(e) —rt
+ — (1 -
— (1~
AL{E[612€0)] + E[622(0)]}e e I"
< + Ay g2(e)

2A

where we have again used Eq. 7-8 and are assuming ¢ sufficiently small.

*This is a typical place where we use the fact that g(e) is no smaller than
order €. If g(e) = 0(e), the last term in Eq. 7-26 would be Ag 2.
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:J'}:
5&& = We next examine the second integral on the right-hand side of Eq. 7-24.
AR
% ) i In this case we will be a bit more careful. Specifically, from Eqs. 7-6c and
LU
° E 7-14 we have that

-r(t-1)

v o s a @ s

A t -T(t-1) t
[ e TE(M2(1)]dT < 3(f - fR)2 [ e E{q2(1)])dr

0 0

L LWL
L8 A

(7-28)

T2

a1y " t - -
s +3482 e rce T){E[Glz(t) + §22(1) Mt .
0

=

e a4

o,
AR

o
¥

In a manner analogous to the calculations in Eqs. 7-25 - 7-27, we can bound

fr

Sl

I~ the second integral on the right—-hand side of Eq. 7-30 in exactly the same

oy

NI form as in Eq. 7-27. Thus for ¢ sufficiently small

3

° %

, t t

* . - - -— t_

S [ e T DEM2 (1) ar < 308 - £0)2 [ e T DE(q2( 1) 1d
YO 0 0 (7-29)
N 2 2 -Tt
Y [ + A7{E[612(0)] + E[822(0)]}e e
N + g g2(e)

" 3 ~

a7

Examining next the third integral on the right-hand side of Eq. 7-24 and

using Eqs. 7-61 and 7-14, we have

1.1‘L
I

- -‘.
>
e
) d
.-:'. e t _ _ t _ _
}fﬂ 0 f e 2r(c T)E[Uz(t)]dr < 3 f e 2r(t T)E[dlz(r)qz(t)]dr
. 0 0
SYSING
O t _op(t-1) ) )
n +3 e E{dp2(1) §12(1) + d32(1)652(1)]d
“~
‘\.j .::; O
\i ol
o: (7-30)
if :f where
\,"- '-~‘
:::3 dy(t) = (fy — fRI[1-2(u(t) + ¢) + q(t)] (7-31a)
"o P
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|
e e da(t) = A(1 - p(t) - ¥) (7-31b)
4 -_:
)
e ! dy(t) = A(u(t) + ¢) . (7-31c)
.,. .
O Thanks to Eqs. 7-11 and 7-12, d;(t), dy(t), and d3(t) are bounded so that we
* . . n\
::l. & can obtain a simple bound
o
)
e b t _ar(e-1) t _2r(e-
::, ‘ f e T E[Uz(‘t)]dT < Ag [ e T)E[qz(r)]dr
SIS 0 0 (7-32)
e t -2r(t-1)
M +Ajp [ e TE{612(1) + §32( 1)}t
s o
‘ORI
" and then again in a manner analogous to Eqs. 7-25 - 7-27, we can obtain the
[} .« p
KD "ﬂ
AV f: following bound for ¢ sufficiently small
')
OO
DoAY € -2r(e-1) ¢ -2r(t-1)
S [ e E(U2(1)]dT < Ag [ e E[q2(1)]dT
b - 0 ° (7-33)
. t 2 2 =-2Tt
w v + A11{E[614(0)] + E[62°(0)]}e e
N
:_, - + A12 g%(e) .
.
N
.’-’
C Combining Eqs. 7-24, 7-27, 7-29 and 7-33 (and performing a few addi-
SV
‘_:u tional, straightforward bounds), we obtain a bound of the following form for
2
-y \‘: e sufficiently small
o e
> [ -Tt
NN E(q2(t)] < Ay3 g2(e) + Apg4 E{8612(0) + §22(0)}e e
~
< 4 t _pr(e-
5 + aps B5EL 1T e(g2(0) ax (7-34)
.', € 0]
. £ o,
n ‘. 2 t_ -
5\ ‘o + A1g 8°(e) [ e 2r(e 1')E[qz(wr)]d'c .
tod £ 0
‘ .
oy o
i =
X,
?: ] 102
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AN
- We can now use Eq. 7-34 to obtain a first bound. Specifically, let
S
o M = sup E[q%(t)] . (7-35)
! t20

vy :

o

¥ > Then using Eqs. 7-17, 7-34, and 7-35, we obtain

PN

R 4 2

. A1s M g%(e) A1 M g<(e)

a L M < A3 82(e) + Ay E{612(0) + 672(0)} € + s+ (7-36)
N r € 2r €

5

Q.‘ "‘, :
: % ¥ l1.€.,
A 'z
TR Ar3 82(€) + Ayy E{61(0) + 822(0)}e

}: M < < A7 € (7-37)
N Ayg M g4(e) Al M g2(e)
SN 1 - -
SR r €2 2r €

T for ¢ sufficiently small. Using this bound in the two integrands in Eq. 7-34
a e

S
1.: and using Eqs. 7-17 and 7-37, we see that

- ~Tt

& E[q2(t)] < A13 g2(e) + A1 E{612(0) + 622(0)}e e

A ;:;
ot SDA Als A1y 8%(e) Al Apy

e + + 82(e) (7-38)
') !: T € 2T
< < Ajg g°(e) + Ay E{814(0) + 624(0)}e e

:: o where the last inequality follows from Fq. 7-8 and is valid for ¢ sufficiently
]

. ‘; small. From this we immediately see that

R

¥ 2
kX - sup  E[q%(t)] < Ay g2(e) (7-39)
S taty(e)

“d

AT, where tgy(e) is given by Eq. 7-7.
L -:,
"-’
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Now we turn our attention to u(t). Without loss of generality, assude

e

\
»
* u(0) = 0 (this is the worst case coresponding to no prior information). Then
. from Eq. 7-5a
e t t
y -T(t- g(e) -r(t-
o w(e) = [ e T nyar + 280 T Ohcyau(e) (7-40)
0 Y e O
h
" First we look at the mean of p(t):
~
LN t ‘r(t"‘r)
E[u(t)] = [ e E[K(T)]dt . (7-41)
& °
t~
Then
:W.! t t
-r(t- -T(t- 1/2
lE(e)]] < [ e T D ER(n) ] [dr < [ e T Er2(n)) 2 . (7-42)
0 0

Then, using Eq. 7-26 and the fact that for x; » O

M M
- (Ix)2 ¢ § (xp)l/2 (7-43)
o i=1 i=1
e
- we find that for ¢ sufficiently small
-..‘
t -T(t-1) -At/¢€
e [E[u(t)}] < [ e [By e + By g(e)]dr
- 0
~
v B -re 7-4
e 1 ee - By g(e) —rt. (7-44)
N “ = (1_e(I’ A/E)t)+ (1-3 I‘tJ
L~ A-¢€T r
al ~
“ &
N
Y < B3 g(e)
. -
:; - where the By are positive constants and again we have used Eq. 7-8 in the
-
» - last step.
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v
: \:: Next we examine E[uz(t)]. To do this, let
>3 =
&
N
B oy n t
. B x = [ e T x(r)an (7-45a)
Wi 0
e
T » 8(6) t e
s y = [ e N(t)dw(t) . (7-45b)
s Ve O
:i:' Note also that from the analysis in Eqs. 7-22 - 7-27 together with Eq. 7-43,
P
ﬂ" 5~ we can deduce that
(ta: e
= Tt 1/2
RS Ay E[612(0) + 692(0)]e e |
Bade {E(x2)}1/2 ¢ + Ag 82(¢)
\:: . 2 A (7-46)
S 2 20y 1/2 — -Tt/2
5 A < B4[612(0) + 822(0)] 7 /e e +'Bs5 g(e) .
L, - .
& e
SRR Next, let us obtain an upper bound on E(yz). Specifically, using Eqs. 7-12
¥ . and 7-17
o ¥ .
e [ 2(¢) b -2r(e-
o E(y2) = E252 [ e DE[N(1)2)d
n_ Y o [
;\? o 0 (7-47)
VI 2 52 2
oS <K g(e)AB()g(e).
D) g 2TrTe ~ €
ol
Y - Now, since pu(t) = x+y, we can obtain the lower bound
|‘."
:'.. v,
Fy E[u?(t)] = E[(x+y)?]
p W
Y
S > E(y2) - 2(E(x2)}1/2 {E(y2)}1/2
o
E’,’ = ) ) — -Tt/2
e > E(y?) - 2/ Bg {By E[612(0) + 652(0)] V € e + Bg g(e))
s ':' Y €
P o
-:::i -:. (7-48)
N
‘:f,.' .
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W'y
¢
!,:" A We now proceed to find a lower bound on E(yz). To begin, note that for t»>l
' »'
::: LY
g E(y2) » BXE) j “2M(Ug N2(1))dr - (7-49)
* - €
# ::
~e :-.
IS Now from Eq. 7-6d
e
Sy
A i
“ N(t) = Co(t) + C(t) u(t) + Cp wl(t) (7-50)
N-‘ ’
a0
"< .
ST where
’ o~
e T Co(t) = [(fL - fR) (1-¢) - A(81(t) + 82(t))] ¥ + a8(t) (7-51a)
]
> Cr(t) = (fy - £R) (1-2y) - a[61(t) + 85(t)] (7-51b)
R
S g = fg-fy - (7-51¢)
ZRRN
TS
* Substituting Eq. 7-50 into Eq. 7-49 and discarding several nonnegative terms,
G we obtain
\..'-
Sl 2(¢) ° -2r(t-1)
ORI E(y?] » L€ e DE(Co2(T) + 2 Co(t) €1 (1) w1
. €
", . 0 (7-52)
.5 !_‘_‘ + 2 Co(1) C uZ(T) + 2 Ci (1) Cy u3(r)}dt
SoCH
B :: From Eq. 7-5la
v'?‘. :
1yt S Col(t) = (£ - £R)2 (1-9)2 w2 + 2(f - fg) (1-y) wA[6)(t) = v 61(1) - v 82(t))
*n 7.
Vueld
ol + 82(61(t) - v 6(t) + ¥ 62(t))?
J _..
- > By - Bg!51(t) - ¢ &§1(t) - ¢ 62(t)l (7-53)
On
W) -
3 iy 2 2,2 - | i ve
" where By (fp - fg) (1-¢)¢ ¢* and Bg = 2|(fL fr) (1-¢) A, are positive

\

-

.‘h
f{: constants. Thus
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E[Co2(t)] » By - Bg E[|61(t) — ¢ 61(t) - ¢ 82(t)]|]
> B7 - Bg{E[61(t) ~ v §1(t) - y 8(t)]2}1/2
(7-54)
> B - Bg{Bg E[612(0) + 672(0)]1/2 e~At/e

+ Bjg el/2 e—At/2e 4 B g(e)}

where the last inequality is obtained in the same manner as Eq. 7-26 followed

by an application of Eq. 7-43. Note that is we define

0 if 612(0) + §2(0) =0
= (7-55)
t1(e) - ¢ tn g(e) otherwise
A
Then
E[Co2(t)] » Byp > O for t » ty(e) . (7-56)

Note that for e small enough tj(e) = tg(e) = 0 or t1(e) << tg(e). Now, from

Eqs. 7-52 and 7-56 we have that for t » max(tj(e),l)

2 g2(e) g2(e) 2
E(y?] » By =——* -2 [ E{Co(T)C1(1)ul1) + Co(1)Cous(1)
£ £

(7-57)
t-1
+ €1 (1)Cu3(1) e
Since Cg(t) and Cj(t) are bounded and fu(t)] <« 1, we deduce that
2 2 t
E(y2) > Byp 562 - gy B4E) T u(o) + Eu3(0 ) T . (7-58)

€ Yoe-l

Then trom Eq. 7-44 we have that tor t » max(ty(e),l)
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o

2 3 2 t
E(y2) > By, BXE) _ gy 5y, B2(E) _ g, 87CE) (Tp[2(4))4a0
€ € €

. p -
e
4oy N
r

t-1 (7-59)
) ! 2 2 t
;. > By g(e) - By3 5—(—-e—)—J' E[UZ(T)]dT
) € €
..-1:,‘.- .
\l\-') -
Y
Y where By4 > 0 and ¢ is sufficiently small.
- 5-';. Combining Eqs. 7-59 and 7-48, we have that for t > max(t;(e),l)
‘.-
A\.
‘‘“S LNy
RN 2 2 t
e E(u2(t)] > By, EXEL _ g3 BLE) (g 2(1))ar
€ €
t-1 (7-60)
o~
> -Tt/2 2(¢
P - - Bys E[§12(0) + 622(0)] g(e) e - B1e gie) __) .
K Y €
By ‘o
e ~
y -
) Then for t » max(tg(e),l) and ¢ sufficiently small
) ] O
P
N
n, 2 2 t
o E(u2(t)) > By X&) _ g 4 8CE) (Tpr 200140 (7-61)
‘ 6 € € t-1
e
*:". “ where By7 > 0.
;. ; »1..
:::. Now, let T be any time » 0 and define
Y
q L
K- N = sup E[u2(t)] - (7-62)
> t>T
oo
“
e
Then, using Eq. 7-61 we obtain
<, b
YN
D
X 2(¢) 2(e)
X N > sup E[u2(t)) » By7 E28L - By3 N 5——— (7-63)
R tomax (tg(e),T+1) E
' )
_': . from which we deduce that
g 2
N N > By 8C€) (7-64)
.‘. €
Ry
} =
K 108
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S with B)jg > 0 and for e sufficiently small. Combining Eqs. 7-39 and 7-64 com-
- o

C Y
N pletes the proof of the theorem.
"

ﬁ In the next section we present simulation results that corroborate this

Andy

ANR result and that in fact suggest several other, stronger results. Several con-
o -

I :::- jectures are presented in the conclusions.
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SECTION 8

MONTE CARLO ANALYSIS OF FILTERING PROBLEMS

In this section, the simulation of the filtering techniques proposed in

the previous sections are presented.

Both the techniques used to simulate the

S: processes of interest and the filters themselves are described, followed by
bt the results. The goals of the simulations were two-fold. First they were
: intended to provide support for results and conjectures regarding the quality
“: of various filtering approximation schemes. Secondly, they were intended to
clarify the types of phenomena that can occur in filtering problems involving
o
E; processes with various time-scale separations, noise levels and information j
rates. As we will see, the results obtained from the simuations support the
results of the previous section as well as suggesting several additional
t: conjectures.
) All simulations were carried out on a PC's Unlimited 286 personal
l‘ computer. Simulation routines were written using Turbo Pascal.
p 8.1 Simulation Techniques
| Before discussing specific simulations we describe the techniques required
:F to simulate both the processes of interest and the filters themselves. The |
- techniques of interest relate to the simulation of Wiener Processes, Markov v
..‘;_

IR AT e o " Al D e w™>
. LA o e *'. A e oty l.?l'«.h.a W0,

Processes and stochastic differential equations.
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P

R

8.1.1 Noise Processes

a5

In the simulations we need to generate increments of Brownian motion

'! processes. These increments were generated by manipulating samples obtained
from a uniform random number generator. The sample values were drawn from a
uniform distribution on [0,1], summed and scaled to approximate a value drawn

‘ from a Gaussian distribution. The scaling factor Q was given by

12 1 atyi/2
o Q = (—-—) (8-1)
'«'. N
:3 where I is the intensity of the noise process, At is the time increment
-,
) between sample times 1in the simulation, and N is the number of values drawn
Eg from a uniform distribution in order to generate a simple, approximately
. Gaussian random variable. A nominal value of N = 10 was chosen for these
t simulations.
. 8.1.2 Markov Processes
, For each of the filtering simulations described in Section 6, a sample
' path for the 4-state Markov Process of Fig. 6-1 is required. “he generation
'! of a sample path for a general continuous-time Markov process can be accom-
plished by generating the sequence of successive states that are visited and
Ei the time intervals between the transitions from state-to-state in the sequence.
\ Specifically, let xy be the state after the N-th jump and ty the time of the
:} N-th jump, we can define 1y to be the N-th holding time for the system and Pij
o the conditional jump probabilities where:
N
- N S N T En-l (8-2)
ﬁ.
. pij = Prixy=j | xy-1 = i} (8-3)
111
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iR

A The generation of the sample path then proceeds as follows. Suppose that we
-,

> have generated xy-j = i at time ty-}. Then we generate two conditionally

' independent random variables (conditional on xy.; = i), namely xy and 1N.

The required density for 1y is girsen by

p(ty | xy = 1) = Ar; exp{-Ar; TN} (8-4)
where
- Aij = the transition rate from state i to state j,
- and
-
- )‘Ti = z Aij oo (8-5)
s j#i
~
- The technique used to generate the required random variables was to gen-
. erate a value z' from a uniform distribution on {0,1]. A new value z 1is then
= calculated as
., 1
u z = - A" ga (z") (8-6)

Ty

.. so that

pz(z) = AT{ exp{- xTi z} . (8-7)

To decide on the order of states entered for the sample path, another
-, variable Yﬁ was drawn from a uniform distribution on [0,1}. A series of

thresholds were then calculated as

b
_ Yo = 0 (8-8a)
“ N N-1 Ay
Y= — . (8-8b)
. k=0 AT
" .
e k#i
~;
Fd
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The state dafter the N-th jump is then obtained as

xw o= j i Yo <Yy <Yy, (8-9)
which corresponds to
Mi
— ;  k#i
pij = { ATy . (8-10)
0 k=1

8.2 SIMULATION OF DIFFERENTIAL EQUATIONS

In order to simulate the performance of the various filtering approaches,
it is necessary to integrate the differential equations describing the filters.
We consider two cases:

1. Filtering with noise present (Stochastic Differential Equations)

2. Filtering in the noiseless environment

8.2.1 Simulation in a Noisy Environment

In the cases where we observe a process with additive noise, we generally

obtain filtering equations of the form
dp = F(p)dt + E(R)d" (8-11)

where p is a vector of probabilities, v is an innovations process with unit

intensity, and F and G are column vectors which we denote by

(£1(p) ] (81(p) ]
Pl c=| . . (8-12)
L‘fnig)_ Lgn('g)_
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in order to simulate the filter (and the process of interest) on a digi-

o tal computer, it is necessary to discretize time into segments of length At
’ and propagate the equations over each interval. The method that was chosen to
propagate the differential equation over each interval is a Runge-Kutta scheme
L
:f adapted to the problem of nonlinear stochastic differential equations [8].
This technique integrates a differential equation from time ty to time
R tn+] = ty + At as follows:
I P'(tw1) = pley) + F(p(end)at + G(p(ey)) av (8-13a)
= F(p(tn)) + F(p'(tnt1))
~o p(tn+1) = p(ty) + 5 at
(8-13b)
o
< G(p(tx)) + G(p'(tn+1))
- + Av
2
g where F is 1 modified function required so that our simulation approximates
i{ Eq. 8-11. Specifically, it is known that as At+0, the solution of Eq. 8-13
converges to the solution of the differential equation
v
: ~ 1 3P
‘5 dp(t) =| F+ — G(p) |dt + G(p)dv = F dt + G dv . (8-14)
o
g; We therefore require that
-~
- ~ 1 3G(p)
- F(p) = F(p) - — G (p) (8-15)
.’:.
:) where
L} N .
) ".\
f
W
o
A
ML)
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~ -
3G1(p) 3G1(p)
’py PN
3G(p) . . . ]
= ) . . (8-16)
op . . .
3Gn(p) . 3Gn(R)
| 9Pl PN |

Therefore, the matrix of expressions F that we use in Eq. 8-13, differs
from the matrix F in the equation describing the process we wish to simulate.
We proceed by providing the equations that were used to simulate the various

filters conjectured for the noise-corrupted observation model.

I. EXACT OPTIMAL NONLINEAR FILTER

The original equations were defined in Egqs. 6-8 and 6-9 as

dpL(t) = e[yz = (y1+y2)pk(t)]dt + e[-ny §3(t) + ny §2(t)]de
+ g(e) (£, - h(t)]pl(t)dv(t) + g(e) A81(t) dw(t)
d§1(t) = =A181(t)dt + e[ng - n381(t) + (ng = n5)pl(t) + ng 62(t)]dt
+ gle)[£] ph(t) + £7 81(t) - h(E) 61(t)]dv(t)
déa(t) = —Ay 82(t)dt + g[ng - ng 82(t) + (n1p - ng)pl(t) + ng §;(t)]dt

+ g(e)lE3 - €3 PL(E) + £4 62(t) - h(t) &(t)]dv(t) -

Casting this in the format of Eq. 8-14 we obtain

115
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b
N ely2 = (v1+v2)pL(t) + nz §2(t) - np 61(¢)]
. Fp) = - (AL + € n3)81(t) + e[(ng - ns)pl(t) + n5 + ng 62(t)
: - (A2 + € n7)82(t) + €[(n1g -ng)pPL(t) + ng + ng &1(t)]
:; (8-17a)
!! £ - h(t))pl(t) + as;(t)
_ G(p) = g(e) g1 pl(t) + (g2 - h)§ (8-17b)
w R
- £3(1 - pl(t)) + (&4 - h)&2
- ~ ) ~
. (fr, = h) = (fL~fR)pL(t) a(1 - pl(t)) -apl(t)
»
N aG(p) -
e =gle)| & - (f1-fr)81(¢t) g2 = (h + A81(t)) -a83(t)

ap N
2 -g3 - (fL~fRr)s2(t) -462(t) £, — (h + A82(t))
A -

(8-18)

.
fl - 1 36(p)

and letting F = F(p) - — + G(p), we can apply the propagation equation
- 2 3p
- given by Eq. 8-14. The increment of time, At, was restricted to be, at most,
ll 10 percent of the mean time between the fastest transitions of the Markov
xA

Chain.
. II. TWO-STATE APPROXIMATE FILTER
t; This filter was described in subsection 6.1 and satisfies Eqs. 6-16
e

and 6-14. It was simulated in exactly the same manner as the exact filter
o described above except that the calculations are simplified because §;1(t),
- §7(t) are assumed to be zero. We therefore obtain
A
v

e
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o o F(pL(L)) = e(y2 =(y1+v2)pL(t)) (8-19a)
LS SIS

LA

a0
Vs . G(pL(£)) = g(e) (fi-fr) pL(t) (1 - pr(t)) (8-19b)
¢ - R .

- S G(pL(t)) = g(e) (f;~fr) (1 - 2 pp(t)) (8-19¢)
PL

' and

me 0 .
AR F(pr(t)) = e(y2 = (yy1t+y2) pL(t))

s .

AT 1 2 2

e (e) (f~fr)< pL(t) (1 - pp(t)) (1 - 2 pr(t))

ER - 2

(8-194d)

R

N

:-"., Using these equations, Eq. 8-14 was applied once again.

S
> II1. FRONT-END/BACK-END PROCESSOR

.-:‘:- -,
4::,-'_ - Simulations were performed for the front-end/back-end processor for which
A

s

::.:'. . the front end calculated the likelihood ratio, L(t) using the equations given
l‘ - [‘ by Eq. 6-26, with dvg, dvy given by Eq. 6-25b. Once again, Eq. 6-26 is a sto-
[ ¢

::t‘ e chastic differential equation driven by white noise and requires a corrected
[0/ e

Q0 4:~_

::::':* drift term for the Runge Kutta technique. If we define p(t) as

Y -

) K

. L(t)

.'."_'-\ ‘(\

NP p(t) =] qur(e) | , (8-20)
. (t)

0, - Qrrit) |
::tyl' o

‘: . where L(t), QLT, QrT are defined as in Eq. 6-26, we can use our previous
. » S
. *_ J_.

£ 4 formulation to simulate

@

T
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M
! (8] —
Q S dvg(t)
K dp(t) = F(p(t))dt + G(p(r))
. I! dvp(t)
wa -
:;.; N where
P RN
)\ -
'\' 0
. L,
S E(p) =1 32 = (A1+22) Qur(t) (8-21a)
g
~ X4 = (A3¥24) QRr(t)
P L
) .. L
. and
3 ] . - .. : -
G(p(t)) =[Ga(g) . GL(p_):l =1 g(e)(h(t)-hg(t)) L(t) . 0

"~ - 0 . g(e) (a - hL(e)) Qur | »
.r_. L R .
VA g(e) (a - hg(t)) Qry - 0
" - -
" (8-21b)

.
N
! .

with G segmented into two column vectors, one assoclated with each of the two

processes vy, vR. Note that vy and vy are not innovations processes. Rather

"'ov-/’..-'n
[ .

) we have that
9 5
v
:ﬁ = dvg(t) dy(t) - g(e) hy(t)de
I - . 8-22
5 dvp(t) | 7| dy(e) - g(e) hg(tyd (6-22)
D
:::: ‘ where
b o .
R hL(t) = B + (a-8) Qp(t) (8-23a)
ol
AV hg(t) = 8 + (a-B) Qgr(t) (8-23b)
o R
o
> i
= 118
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and the true innovations is given by

dv(t) = dy(t) = g(e) h(t)de

Since dvg and dvp ditfers from dv only by a drift term, we can simply obtain

the correction terms corresponding to vg and vy and add them. Specifically

!ﬂg(e) (BL([) - QR(t)) g(e)(a-8)L(t) -g(e)(a~B)L(L) |
1GR |
- = 0 0 0 |
Ip |
l 0 0 g(e)(a~B)(1-2Qpr(t))
(8-24a)
f‘ 0 0 0
a6y, !
—_— = 0 g(£)(a=8)(1-2Qr1(t)) 0
ip |
3 0 0 0
(8-24b)

Finally, we obtain F(g) for simulation purposes by summing the correction

terms associated with dvy, and dvg to obtain:

—

~Y; 82(e) (a=8)2 (Qur(t) - Qrr(t)) (1-2Qgr(t)) L(t)

F(p) =| %2 = Gi+ag) Qur(t) = —- g2(e) Qur(t) (1-Qup(e)) (1-2qup(e)) |

M - (A3+8) Qrr(t) - — g2(e) Qgr(t) (1-Qgr(t)) (1-20Qgp(t))

Once again, the increment of time, At, was small (at most 10 percent)
compared to the mean time between the fastest transitions of the Markov Chain.
The initfal values of L, Qp 1 and Qpr were chosen according to Eq. 6-30.

Once a value was obtained tfor L(t) on each interval, that value was used by
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another routine which performed a prediction calculation using Eq. 6-34 and a
"measurement” update using FEq. 6-37. Both of these calculations involve only

straightforward vomputations.

IV. FRONT-END/BACK-END PROCESSOR WITH AVERAGING ASSUMPTION

The simulation of this filter is very straightforward, using Eqs. 6-46
and 6-47 to obtain L(k) on each interval. A fast routine simply calculates

the integral of dy(t) by performing a summation of the form:

y = Y dy(1) (8-25)
kT(e)st<(k+1)T(e) .

The "slow” routine was then used to propagate the probability pp in a two-step

fashion with a prediction step and an update step as in III above.

8.2.2 Simulation in a Noiseless Environment

In general, simulation of the filtering equations for the noiseless envi-
ronment is simpler than in the noisy environment because the equations are no

longer driven by a Wiener process.

I. EXACT PROBABILITY EQUATIONS

The exact equations for the probabilities of being in the left or right
states are given by Eq. 6-49. Equations 6-49a and 6-49b are ordinary differ-
ential equations which can be solved using a simple integration routine. In

this case the Runge-Kutta technique requires the calculation of

PLOLHAL) = pr(t) + pr(t) « At (8-26a)

[}

| -
pL(t) + — [pL(t) + pple+at) | at . (8-26b)

4

pr(t+at)

120
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[hese Ssteps were implemented with time intervals such that At was small com-
pared to the time between the fastest transitions in the Markov chain. The
civcalations were performed between jump times with an additional integration
tor the residual time ZtN just preceding each jump:

~ N - tN-)

Aty = (ty = tnN-y) - —--—— | At (8-27)

A

il

L X _Jdenotes the largest integer < x .
At jump times, Eqs. 6-49c - 6~49d were used to update the probabliities.

[1. FRONT-END/BACK-END PROCESSOR WITH AK, AR

In this case, the processor structure in which ARy and AK, the increments
in the upper state residence time and the total number of counts respectively
are determined for {ndividual segments of time by a fast processor. These
values are then used by a slow processor to calculate state probabilities.

The front-end processor determines two quantities, R(t) and K(t) where
+
R(ty) = R(EN-1) + (tNy — ty-1) x(tN-1) (8-28a)
K(CN) = K(ty-1) + |X(CN) - x(tN-l)! (8-28b)

Wile Ne
s 0 1f p(t) is in state 2 or 4 at time ty.

x(tyg)
( 1 if p(t) is in state l or 3 at time tg.

Dnie these quantities are obtained for a time interval [kT(e), (k+1)T(e)),

thuey are used by the slow processor to update probabilities using the

121




% ALPHATECH, INC.

difterential equation given by Eq. 6-56. In this case we must be careful when

R
Lo S N

- -

integrating the equdtion because of the dK(t) driving term which represeuts

increments in a jump process. The equations that we would normally implement

™.

4re in the standard Runge~Kutta format

EL(t+At) = pr(t) + Fypp(t))aRe + Fo(pp(e))at + G(pp(t))ab + Gy(pp(r)al

L
) (8-29)
using the terminology of Eq. 6-59 to rewrite Eq. 6-56. The second step of the
% integration is pertormed using
? _ AR¢
pL(t+at) = pp(t) + [Fi(pL(t) + Fy(ppL(t+at)) -
- _ At
Py + [Fa(pL(t)) + Fa(pL(t+at))) —
2 (8-30)
- r - AD
. + [Gr(pr(t)) + Gy(pr(t+at))] .
r; - AU
+ [Ga(pLlr)) + Go(pL(t+at))] .

et us dnalyze the error introduced by the use of Eqs. 8-29 and 8-30. First,

' it we pertorm Taylor series expansions of FI(EL(t+At)), etc., in Eq. 8-30 and
.
- keep only terms of zeroth and first order, we have
prlt+at) = pr(t) + Fr(pL(t))aRe + Fa(pp(t))at + G(pp(t))abD + Gy(pp(t))al
~ .

1 r ' ) ] ]
¢ = [F(pLOO)BRE + Fo(pL(t))at + G (pL(t))aD + GZ(PL(K))AUl

ta e .

Flipr(t))aRy + Fy(pplt)at + Gy (pp(t))abd + Gy (pp(t))al]

I
! '?J!’
7

N (8-31)
-
(PN
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]
__ﬁ: . Now, recalling the definition of the functions Fy, Fp, G and Gz,
\':~ :\
q.'- -
AN
K- Fi(pL(t)) = elw2=ug — (uyptup-u3—ug)pr(t)]
(8-32a)
' -E + (a-B)g(e)pr(t)(1-pr(t))
\ .
hr 2,
N
TR Fo(prL(t)) = elug = (u3ztugdpL(t)]
b (8-32b)
N . + 8 8(e) ppL(t) (1-ppL(t))
N -g(e) apy(t) (1-pL(t))
NN Gy(pL(t)) = (8-32c)
NN Al + ag(e) (l-ppL(t))
LS -g(e) BpL(t) (1-pL(t))
N Gy(pr(t)) = (8-32d)
\S A2 + Bg(e) (l-pr(t))
¥ o
[ &
o and substituting into Eq. 8-31 we obtain
e,
R, i
Py pL(t+at) = pr(t) + [(a-B)g(e) pL(l-pL) + e[(uz-us) = (uituz—u3-ug)pL(t)] AR
\” -.
* r’ + [Bg(e) pL(l-pL) + elug - (u3+u4)PL(t>]]At
"
AV ag(e) pr(t) (1-pp(t)) Be(e) pL(t) (1-pL(t))
'.\: " - AD - AU
0~ A1 + ag(e) (1-pp(t)) A2 + Bg(e) (1-pp(t))
Py '
+TA ¢
. 2 2 2
>, g<(e) a 8
2 + pL(T) (1=pL(t)) (1-2p(t)) » | (a=8)2 aRZ + g2 at2 + — a2 + — av
YA 2 A z2
‘ui
~
=~ a(a-8) B8(a-8) aB g2
vy + 2| B(a-B)At ARy - ARy AD - AR¢ AU - — At AD - — At AU
et Al A2 AL A2
""\ ~
-.$~ T
iﬂ o _
A afB
. a + ——~ 4D AU
\::-
K o=
S
“TS 123
A
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vy -
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To compare Eq. 8-33 to the exact equations, consider the relationship between
App and AL for small AL. Substituting Eq. 8-34 into Eq. 6-65, we obtain Eq.

8-35 and finally Eq. 8-36

- L(t+at) = L{t) + AL . (8-34)
- app(t)
L oL = + 0((8L)2) (8-35)
. pL(t) (l-pp(t))
Y .
AL = [} Bat - (a-B)ARy + %T AD + i) AU| g(e) + O(gz(e){} . (8-36)

=
~

Expanding the exact expression for L, (Eq. 6-63), using a Taylor expansion for
ix the exponential and Binomial theorem for the power factors, we obtain exactly
= Eq. 8-36.
Y
~

Therefore we see that the basic Runge-Kutta technique will be accurate to

within 0(g2(¢)).

g

B III. FRONT-END/BACK-END PROCESSOR USING LIKELIHOOD FUNCTION

Simulations were performed for the front-end/back-end filter structures

&; for which L(t), the likelihood ratio described by Eq. 6-64 is calculated using
the equation given by Eq. 6-63. The calculation of L(t) is straightforward
and performed over time increments of length T(e), based upon the ARy, AD, AU

e statistics determined by the fast integrator and counters of the "front end.”

B These statistics were determined from the sample path in the same manner as

et described for I1 above. The values of L(t) were calculated and passed to a

“slow routine” which calculated the state probabilities using a two-stage

process comprised of prediction and update calculations.
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" The prediction step was implemented using the "approximation technique”
given by Eqs. 6-76 and 6-77. For the choice of y's that was used, however
! (uj=1), the condition of Eq. 6-74 was satisfied so that Eqs. 2-76 and 2-77

were exact. The update calculation was done using Eq. 6-78.

8.3 SIMULATION RESULTS

E; 8.3.1 Probability Propagation for White Noise Model
- In subsection 8.2, the simulations for four filtering techniques in the
.
e noisy observation case were described. The results for each of these cases
?T are provided in Figs. 8-1 through 8-14 and are discussed below. The plots

of the filter outputs show two pieces of information. The "square wave"” plot
;& shows the sample path of the system in terms of left-to-right transitions.

A high value in the plot (.75) indicates the system is actualiy in the left
palir of states and a low value (.25) indicates the system is actually on the
right. The probability of being in the left pair of states as determined by
the filter is superimposed on this plot. Since a large value of pj, represents
o a conclusion that we are on the left and a small pj, that we are on the right,

an indication of filter performance is the amount of time that the filter

g? output and the sample path are both in the top or bottom of the plot. This
- provides a qualitative measure of how often the filter reaches the correct

- "conclusion.”

b

I. EXACT FILTER

;\ The simulations for this and all other white noise cases used the param-
N

eter values given in Eq. 8-37
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AL = xg =1 (8-37a)
Ap = A3 = S (8-37b)
MY = w2 = w3 = oy =1 (8-37¢c)
At = 0.1 (8-37d)
e = 0.01 (8-37e)

where At is the time increment between calculations.

The results for four simulations are provided for the exact filter case.
Each simulation was done with an identical sample path, but with different
values for g(e) the signal magnitude in the output. With a noise intensity
of 1, Figs. 8-1 through 8-4 provide results for g(e¢) = 1.00, 0.30, 0.10, and
0.03 corresponding to eo, 81/4, 61/2, and 63/4, respectively.

Several features of the results are worth noting. The filter appears to
display a "switch” type of behavior for larger values of g(e), particularly
g(e) = 1. For g(eg) = 51/4, performance deterioriates somewhat, but still
provides a correct result in the sense that p; > 0.5 for the majority of time
that the system is in the left pair of states and py < 0.5 when the process
is on the right. When the signal strength is decreased to g(e) = 81/2, per-
formance becomes somewhat worse, with smaller excursions away from the uncon-
ditional probability value of 0.5 and with occasional excursions to the
{ncorrect side of pj, = 0.5, without a tranmsition having occurred. Finally,
when g(e) = 81/2’ performance breaks down substantially. Although the proba-
bilities move in the same general direction as in the 51/2 case, excursions
from pp, = 0.5 are quite small, and bursts of noise occasionally generate the

incorrect conclusion that a traansition has occurred.
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I1. AGGREGATE PROBABILITIES FOR WHITE NOISE MODEL

The output of the aggregate filter described in Section 6 is prescated

0.01, g(e) = 0.1, 0.3 and 1.0 (Figs. 8-5 through 8-7).

next for the case of ¢
The results of Section 7 indicate that for g(e) = 0(61/2), the performance of
this filter should be asymptotically close to that of the optimal filter as

€ decreases to 0. Comparison of the simulation outputs of the aggregate and
exact filters shows almost exact agreement for the cases of g(e) = 0.1 (61/2)
and g(e) = 0.3 (61/4). In the case of g(e) = 1, agreement was still good, but
deviations of up to 0.05 in magnitude can be found. 1In all cases, however,
the difference between the aggregate and the exact versions of the filter was

of much smaller order than the bound of O(gz(e)) derived in Section 7.

III. FE/BE SIMULATION FOR WHITE NOISE MODEL
The FE/BE model refers to the case when a sufficient statistic, L, is
calculated in batches by a front end with no apriori information. The back

end then applies a Bayesian update procedure using successive values of L.

1

The simulations were done with g = 0.3 and ¢ .0l; a case in which the opti-
mal filter performs well, but does not yet act like a "switch.” The time
intervals, T(e) selected for the collection of data were 1, 3, 10 and 31 cor-
responding to e, 5'1/4, e~1/2 and 5'3/4, respectively. The plots for these
cases are provided in Figs. 8-8 through 8-11.

The rimulations show that for relatively small time intervals, namely
T(e) = 1 and T(e) = 3, performance is excellent, as the probabilities gener-

ated, differ from the optimal values by at most .01 for this sample path. It

is our conjecture that for g(e)T(e) < 1, excellent performance can be expected,

with deteriorating agreement between the exact filter and this approximation [
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when g(e)T(e) exceeds 1. The values of this product for T(e) = 1 and 3 are

- both less than 1, and we do in fact see very good performance in this case.
!? When we reach T(e) = 10, we have that g(e)T(e) = 3 > 1 and therefore expect
that deviations between the FE/BE filter and the optimal filter will start

to increase. This is indeed the case; comparing the FE/BE with ten time unit

batches to the exact filter for this sample path shows a maximum deviation

LIPS

, -

of .04 while for T(e) = 31, in which case g(e)T(e) = 9.3, we have a maximum
deviation of .03, with values consistently biased towards the 0 or 1 limits.
It is worth noting that although the probabilities generated by the filter
differ slightly, the final conclusions regarding the current state of the

system seldom differ.

IV. FE/BE SIMULATION FOR AGGREGATE WHITE NOISE MODEL

The final filter approximation, actually a combination of II and III,
was simulated with the same parameter values as III, ¢ = .0l, g(e) = 3. The
[' batch times, T(e), were selected to be 3 and 10 (Fig. 8~13). The results are
very similar to those in case III, showing excellent agreement with the exact
filter for T(e)g(e) = 1 (within .01) and somewhat larger differences (maximum
T .06) for T(e) = 10 which yields g(e)T(e) = 3. A final run is provided in Fig.
8~14 in which g(e) was decreases to .l while T(e) remained at 10. In this

case, g(e)T(e) = 1 so we again expect reasonable agreement with the optimal.

L

!

Comparing Figs. 8-14 and 8-3 we find that this is indeed the case.

AT .
e

8.3.2 Quantitative Aspects of White Noise Model Simulations

R I R )

- In addition to the simulations based on simple sample paths for which
plots were generated, multiple sample paths for individual parameter values

were used to estimate numerical characteristics of both the exact filter and
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15
A4S
QNSRS the aggregate approximation. In particular, the quantities of interest were
b \'_"A )
B RS
=:}ﬂ measures of the rate at which information is supplied to the filter by the
A
W -
* '1 measurements and in the case of the approximate filter, the difference between
i:Ej the approximate output and the optimal output. The first quantity, the infor-
_:E: 5' mation, is defined in Section 7 as p(t) and is the magnitude of the difference
} D) L between the filter output and the output that would appear in steady-state if
X L. ! '5,
{53 e no measurements were available. For our four-state model, if we calculate the
L
lﬁf }{ probability of being in the left palr of states (pL(t)) then
R
T T 2
S u(e) = | pl(e) - . (8-38)
'~ Y1+Y2
v, o
-\
W'
Yo =
-
- In Eq. 8-38, yy; and yp are the left-to-right and right-to-left transition
Y
e
AT rates assuming the fast transitions have reached steady-state and are given by
fo
‘T equations defined in subsection 6.2.1. For our numerical example, y]; = y2 = 1.
‘ i\.« B
i r. The measures of these quantities that we are interested in are their suprema
'{:' . and their mean square values.
P
oo
-, Parameter Values:
r,
:? Lo In all simulation runs, the parameter values that were selected are given
N2
20
N by Eq. 8-37, and each sample paths had a length of 1000 time units.
Al
:'.','.
N
¢ Mean Square Results
- ¥
{f : The first three plots (Figs. 8-15 through 8-17) present the results for
3 ‘_-.
4;_ - the mean square error of the filter based on the aggregate model and the
SN
- information available in the "exact model.” The first graph provides a log-
'}2: f log plot of the mean square value of the information versus the order of ¢ in
.;E: the signal power expression. These values are given by Eqs. 8-39 and 8-40.
e
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3 B
. U
E
- S .
e = ) 1 1 T Y2 N2
S Mean Square Information = — log | — | (pL - dt (8-39)
_:.: 2 T 0 1 Yi+v2
\.
A2 ! log(g(e))
-~ Power of epsilon in signal = _g__g___ . (8-40)
- log(e)
SN
‘-1.0 '.‘
Q*.
" The plot shows a distinct break point in its behavior at g(e) = el/2,
L
'_ Specificatly, for g(e) = ek, k ¢ 1/2, there is very little difference in the
,::'-; mean square information rate generated by changing the value of ¢ over several
s
o~ -
orders of magnitude. For values of k > 1/2, there is a clear drop in the
':'.- -~ information available tc the filter as € decreases. This supports our anal-
-t,_u ri'
LS
o ysis which indicated that g(e) = el/2 is a critical dividing point in the per-
o,
: r formance of these estimation algorithms.
:-r « The second graph plots the logarithm of the mean square error against
o 4
~ N
TN
.':-I_ b the power of ¢ in g(e). In this case we do not see the threshold effect and
\‘
\' E the plots appear linear for the values of ¢ that were simulated. When the two
A
:_-; sets of data are combined and the quotient plotted against ¢, we see a change
~ ..
-:j - in behavior at g(e) = el/2, For g(e) < el/z, the plots are linear, which
S
4
s.
.;) f slope 1, indicating a linear relationship with ¢ as predicted in Section 7.
. s
\:: - For g(e) > €1/2’ the error is much larger relative to the available informa-
l"
“:; tion and there is no evidence that the ratio of error to information will
)
L4 B
>
. decrease significantly more. This is again in agreement with the theoretical
2 3
N results of Section 7.
r0
T
- "::: Supremum Results:
a’
®. An identical set of graphs (Figs. 8-18 through 8-20) was prepared for
.*- =
f: ~ estimates of the suprema of the information and the approximation error. The
o
: . estimates were calculated using Egs. 8-41 and 8-42 for the simulation data.
Wy
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My . ! v
TR - !
. e Isup = nax P[‘(t) - T (8-41)
o t Y1tv2
“ n
- Egup = max | pb(t) - pp(t) (8-42)
.- t
" where pL(t) and pp(t) are defined as the exact and approximate probabilities
s I .
r. ‘:‘ respectively. The first graph provides a plot of log (I) versus the power of
.:- e in g(e). The plot exhibits identical characteristics to that for the mean
L
g square quantity. Comparing plots of maximum error and the quotient of error
. -
A and information, we find that they are also very similar. The last plot, the
I
L quotient of the error and the information, exhibits a slope of 1 as in the
ST
‘ = mean square case.
S
- ‘_:'. 8.3.3 Sample Paths and Probabilities for the Discrete Measurement Case
:j _ The discrete measurement simulations were run with three different
L~ 2
{ . filters as described in subsection 8.2. The set of nominal parameter values
-
. that were chosen for the simulation are given in Eq. 4-43.

l e = 0.01 (8-43a)
L4 o
‘4 A =1+ g(e) (8-43b)
) -
- Ap = A3 = A4 = 1 (8-43c)
. ]
Al = X2 = u3 = u4 =1 (8-43d)
A At = 0.1 (8-43e)
q
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I. EXACT FILIER
Simulations of the exact filter were run for g(e) ranging from 0.03 to
3.0. Prior to the simulations we expected very poor performance for gj(e)
< 21/2, marginal performance for g(e) = el/2 and excellent performance for
gle) > 51/2. The simulations are in fairly close agreement with these con-
jectures. In the first plot (Fig. 8-21) for gj(e) = 0.03, the filter output
appears much like a random walk about the p;, = 0.5 line. As gj(e) is increased
to 0.1, or 51/2, in Fig. 8-22, performance improves with the filter reaching
the correct conclusion regarding the correct state of the system when the sys-
tem remains in that state for times which are 0(e~l). The filter has little
chance, however, of detecting transitions to the left or right if the duration
of such a sojourn is for a significantly shorter period of time. As the value
of gi(e) is increased to .3, 1, and finally 3 (Figs. 8-23 through 8-25), the
filter output becomes much better, and begins displaying "switching behavior.”

In addition, short excursions of the system to the left and right are detected.

II. DIFFERENTIAL EQUATION APPROXIMATION TO DISCRETE MEASUREMENT FILTER

The differential equation approximations to the optimal filter was simu-
lated with identical nominal parameter values as in I, but with g(e) = 0.1 and
time intervals for integration of 1, 10 and 50 seconds. 1In our integration
technique for this case (driven by a jump process), second order effects which
are O(gz(e) AKZ) were ignored. Since Af = At‘l = 1 for all of our simulations
0(AK) = 0(T(e)) and therefore ignoring the second order terms is justified for
g(e) T(e) small. 1In our simulations, g(e) was 0.1, so for the case of T(e) =1
(Fig. B-26), the differential equation should provide a good approximation, for

T(e) = 10 (Fig. 8-27) a warginal approximation, and for T(e) = 50 (Fig. 8-28)
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a poor approximation. Examining the simulation results in these figures

and comparing them to Fig. 8-22, we see that the maximum deviations from opti-
mum are approximately 0.0l, 0.04 and 0.12, respectively, confirming our expec-
tations. To provide further support, two additional simulation results are
provided both with T(e) = 10, but in the first case, g(e) = 0.03 for which we
expect good performance, and in the second, gj(e) = 0.3, for which we expect
poor performance (compared to optimal). The plots of the simulations are pro-
vided (Figs. 8-29 and 8-30) and support these expectations, with maximum devi-

ations of 0.005 and 0.150 for these sample paths.

III. FE/BE STRUCTURE FOR DISCRETE MEASUREMENT MODEL

The FE/BE filter structure was simulated with different lengths of time
used for the batching interval at the front end. For this filter we expect
good performance relative to optimum for cases with g(e) T(e) < 1 and poorer
performance when g(e) T(e) > 1. (Note: This is only a rough threshold, a
more precise condition on the parameters is conjectured in subsection 8.3.4.
Therefore, since a value of G(eg) = 0.0l was used in this section, we expect
reasonable performance for T(e) being 50 or even higher. This was the case
in the simulations with maximum deviations of .0l, .02, .04 from optimal for
T(e) =1, 10 and 31, respectively (Figs. 8-31 through 8-33). In the final
simulation for g(e) = 0.1 (Fig. 8-34), T(e) was set to 75 and therefore we
expect that we will see marginal performance (£T(e) = 0.75). The simulations
showed deviations by as much as .08 from optimal but in general agreement was
quite good. A tinal simulation with g(e) = 0.3 and T(e) = 20 was run to dem-
onstrate the case where absolute filter performance is fairly good. In this
cane wT(e ) was 0.2 and relative performance was very good as well (compare

Fiv. 5=35 to Fig. B=214).
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8.3.4 Quantitative Simulations for FE/BE Processor in a Noiseless Environment

In a similar manner to subsection 8.3.2, a number of runs were performed
for the filter which approximated the optimal filter in the discrete measure-
ment case by calculating a statistic L(t) in a batch fasion and using this in
a slower set of calculations. The results are provided in Figs. 8-36 to 8-45.
The first two graphs (Figs. 8-36 and 8-37) provide log~log plots of the dif-
ference between optimal and approximate filters versus g(e) for the value of
T(e), the time between batches, varying from 1 to 31 units. The value of ¢
is selected to be 0.1 in the first case and 0.001 in the second. These plots
provide evidence that:

1. The difference between approximation and optimal is linear
in g2(e).

2. For T(e) small relative to e_l, changes in T(e) should have
little effect on relative filter performance.

Figure 8-38 and 8-39 confirm the second point by displaying approximation
error versus T(e) for ¢ ranging from 0.001 to 0.1. Finally, using these
plots, the mean square approximation error was conjectured to be of the
following form:

T

1
lim-—;— f (pL(t) - pL(t))2 dt = Klgz(e) (1 + Ky eTz(e)) (8-44)
0

T
e+0

where Ky and Ky are constants. To support the conjecture, log-log plots of

approximation error versus the expression in Eqs. 8-44 with Ky = Kp = 1 were

generated for the simulation runs with ¢ = .1, .01, .001 (Figs. 8-40 through

8~42). The linearity of the plots and their slope of 1 support the conjec-

tured formula in Fig. 8-42. In the case of ¢ = 0.001, the plots are s~mewhat
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noulinear, which we believe is only the result of the time interval tor simu-
lation, 3000, being short relative to the average slow jump time (1000).

A conjecture regarding the mean squared value of “information” at the
ontpat of the filter as a function of g(e) and € was formulated using Figs.
8-43 to B-45. Figures 8-43 and 8-44 plot mean square information versus »
and g(e) with resulting slopes of -1/2 and 1. These two plots lead to the

cunjecture of Eq. 8-45.

LT v2 |2 82(e)
lim — | pL(t) - ——— | dt = K3 . (8-45)
T+ T 0 Y1+Y2 £
£+0

To provide support for this conjecture, mean square information was
plotted against the expression in Eq. 8-45 with K3 set to 1. The result
wis a linear plot (Fig. 8-45) with slop 1 providing strong support for the
conjecture. If we combine Eqs. 8-44 and 8-45, we can obtain a condition for
the relative error of the approximation to go to zero. First we divide the

equations to obtain Eq. 8-46.

T 2
f , PL ~ pL l dt
O |
lim = = K4 e(1+eT?(e)) - (8-46)
PL = T~ t
20 Y172

The expression on the right side of Eq. 8-46 approaches 0 as ¢ approaches

0, it T(e) satisfies Eq. 8-47.

’

T(e) = 0(ek) , k> -1 . (8-47)
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In summary, this section provides conjectures for the conditivns on the
order ot ¢, g(+») and T(e) required to provide a nonzero quantity of informa-

tion at the trilter output and relatively unimportant error for the tront-end/

back-ead approximation to the ideal filter.

#.4 MONTE CARLO CHARACTERIZATIONS OF BATCH STATISTICS L(t)
In Section 6, a quantity L(t) was introduced for the discrete measurement
model as the likelihood ratio defined earlier by Eq. 6-64.
Pr{x(t), 1<t | p(t) on the right)

L(t) = . (8-48)
Pr{x(t), 1<t | p(t) on the left)

This value L(t) is used to perform Bayesian updates in the back-end pro-
cessor using Eq. 6-78. It would be useful to obtain an analytical approxima-
tion to the conditional distributions of L(t) in order to predict performance
characteristics for the estimator structure. As a first step in obtaining
such a formula, a series of simulations were performed to obtain histograms
for the value of 2(T(e)), where 2(T(e)) = &n (L(T(e))) and T(e) is the time
interval for each front-end batch. Figures 8-46 and 8-47 show normalized
histograms for 2(T(e)) based on 200 sample paths and T(e) = 1 and 3, while
Figs. 8-48 through 8-50 show histograms for T(e) = 10, 31, and 100 and using
2500 runs. Each figure actually plots two histograms, each normalized to unit
are1, one for o(t) on the left and for for p(t) on the right. The amount of
separation between the curves provides a measure of the amount of information
obtained regarding which pair of states the system is in (left or right).

The results for T(e) = 1 and 3 are somewhat jagged, but are nearly on top

of each other, and therefore a very small amount of information is obtained in

D LIS
-

e JCRRE T R S T ) ‘~ . ".- ".- ‘_‘..' LAY ‘H\ 'ﬁ
LT Y % N -, " '™ o
e R R e e R R,




suny 00z Pu® €°0 = 18 ‘T = 1 1oy (¥[¥)d “(1]¥)d 30 101d *9y-g ~aniiy

TETYTVY YL

y785-d

B AL S U SR TN R T MUt TS
AE:.a::?&.;?ir%ﬂi:?ﬁ#ﬁ:ﬂ%ﬂ%&#% [had m_.La..s.i.E.sz giﬁi.{nﬁairggiﬁ:{%a.s=.:..:...,, '

g
ae
e

Xy
s

—

-4

TR TRV YT W
.
)
f

hat 4

[

Bala e S
.

4 "._
¥ r
hﬂ "

’ e

ﬁ "5
]

ST

w
w

ALPHATECH, INC.

R P R S BB -.n..‘-
.a....-
.P.vﬂ.‘...- .lfJJ/ncnv-

-LLL}&'P} 1 A 4




-A188 424 PRSSIVE ACOUSTIC TRACKING AND FILTERING PROBLENS HITH 3/3
SCALES(U) RLPHATECH INC BURLINGTON
R CRRON COLI ET AL N0V 87 TR-352 NOOO14- 85 C-0349

UNCLASSIFIED . F/G 17271




-

IHII

foniry

L WSIS

ﬁ-
=

'.n
=

1-4
» ;E'—

13 4~o
[




W T EST W T

ALPHATECH, INC.

Ly

R-5845

Plot of p(%£|L), p(&]|R) for T = 3, g; = 0.3 and 200 Runs
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Plot of p(2|L), p(&|R) for T = 31, g; = 0.3 and 2500 Runs

Figure 8-49.
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1l or 3 time units when gj(e) = 0.3. The plots for T(e) = 10, 31 and 100 show
successively more separation between the peaks of the curves. With less over-
lap, there is much less chance of £(t) or L(t) providing “incorrect” informa-
tion about the state to the back end.

The appearance of the histograms suggests that a Gaussian approximation
to the conditional distributions might be effective. To obtain such an approx-
imation, we need only calculate the mean and variance of 2(t). We start with
the oumber of jumps K and the residence time in the the top state, assuming
that the process is on the left. If we assume that T(e) is long enough for

the fast dynamics to reach steady—-state, we can calculate:

Aot
E[Re(t)] =T
¢ A1 + X2
- 2 Aot
VAR[R¢(t)] -—
< (A1+)\2)3
I
2 At
oy E[K(t)] = —_—
~; (A1+12)
\ 4 A1A2(A12+A22)t
" VAR[K(t)] =
(Ar+ag)3
5
“
o 2 A a2(x1—A)t
COV[Re(t) K(B)] =
) (A1+ag)3
N
Using these equations we can calculate the conditional mean and variance of £
:;E given that we are on the left.
N
b
2
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E[2]|L]

VAR[¢|L]

where C;, Co,

Eqs. 8-49 and

[1H

1 .
C1 E[Rg]|L] +T C2 E[K|L] - Cq4 (8-49)

n

C12 VAR[R¢|L] + C32 VAR{K|L] + 2 C; Cp COV[R¢K|L] (8-50)

and C4 are defined in the Appendix C (subsection C.2). Using

8-50 and their counterparts 1if the process is on the right, the

approximate conditional distributions for 2(t) were calculated and plotted for

eaach value of

T(e) that was used in the simulations. Comparing these approx-

imations (Figs. 8-51 through 8-55) to the simulations we see there is close

agreement.

8.5 DISCUSSION

The iatention of the simulations was to provide evidence supporting both

conjectures and theoretical results from Sections 6 and 7.

For the noise model we note some important features of the simulation

results:

1. For large signal strengths, the estimator behaves in a switch-
like fashion, detecting state transitions shortly after they
occur.

2. For low signal strengths, insufficient information is obtained
between transitions to determine the current state of the system.

3. All the approximate filters approach the performance of the
optimal filter for appropriate parameter ranges.

4. The mean square approximation error of the aggregate model filter
is a factor O(e) smaller than the mean square "information” in
the output of the optimal filter for small ¢ and g(e) < el/2,

5. For g(e) » 51/2, the mean square value of the information rate
is relatively unaffected by decreases in the magnitude of €.
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For the discrete measurement model we can make the following general comments:

1.

The choice of the magnitude of gj(e), the differences in the
fast transition rates, has a critical effort on filter perfor-
mance which can vary from providing virtually no information
(gi(€) very small) to switch-like performance (gj(e) large).

For small values of g(e)T(e) a differential equation on the slow
time scale can be used to approximate the optimal filter with
good accuracy.

The optimal filter can be approximated by a two-stage structure
with front end calculating Ry and K and back end carrying out
prediction and update steps given appropriate conditions on the
system and filter parameters. This condition is conjected to
be that the expression in Eq. 8-46 be small.

The conditional distribution of the statistic 2(t), the log of
the likelihood ratio defined by Eq. 6-64 can be well-approximated
by a Gaussian distribution. Furthermore, the mean and variance
of the distribution can be approximated by simple functions of
the fast transition rates.
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SECTION 9

CONCLUSIONS

In this report we have described the results of our research on alternate
architectures for nonlinear filtering problems possessing the key features
found in ASW problems. Specifically, we have focused on systems in which a
slowly-varying part of the state influences or modulates the behavior of a
much more quickly varying portion of the state. This fast variable is then
observed, and the ultimate objective is to estimate the slow variables.

As we have discussed, this problem can be cast in the framework of per-
turbation methods. 1In Section 4 we provide a survey of research on perturbed
estimation problems and discuss the architectural implications of these vari-
ous results. A conclusion of this survey is that there are no previously-
developed results that are applicable to problems of the type of interest
in this study.

There are several key ideas that we wished to address in this study. One
was to develop an understanding of the relationship between the time scale of
the slow process and the order of the magnitude of the measurement signal-to
noise ratio. The second was to investigate alternate suboptimal architectures
and in particular the so-called front-end/back-end architecture commonly used
in ASW systems. In such a system, rhe front end processes a batch of data to
produce an estimate of the slow variables based on the assumption that the

slow variables are constant over the batch. This sequence of batch-produced
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estimates is then fed into a back—-end processor that tracks the slow varia-

tions in the slow process. Questions of interest are: when is this archi-

tecture a good one and how long should the batches be when compared to the

natural scales determined by the slow process and by the measurement infor- j
mation rate.

Qur investigation of these and several related questions has been carried
out using a relatively simple, four-state Markov process possessing two time
scales. We have used two different measurement models in our study: one in
which poor quality, noise-corrupted measurements of the fast process are
available and one in which we have perfect measurements of the fast process
but the influence of the slow process on the fast one is quite weak. 1In this
context we have been able to explore at great depth a variety of suboptimal
filter structures and have obtained both theoretical results and convincing
evidence from simulations concerning the asymptotic optimality of several
suboptimal estimators.

In particular, for the problem with poor noise-corrupted estimates:

1. We have proven an important result showing the asymptotic opti-

mality of a suboptimal slow estimator that essentially averages
out the fluctuations in the measurements due to the fast vari-
ables. This result provides a clear picture of the relationship
between time scales and the asymptotic quality of the measure-
ments. These results, and several stronger sample path proper-—
ties, have been demonstrated in our simulations.

2. We have implemented front-end/back-end structures both using the

full, four-state model and the same averaging strategy described
in 1. Simulations have shown that both of these estimators
achieve asymptotically the same performance as the optimal filter.
In addition, these results suggest particular asymptotic formulas
for the length of the time interval used in the front-end batch

processor.

For the case perfect fast measurements but weak slow-to-fast coupling:
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T

N 1 l. We have demonstrated via simulations that an extremely slow
;: gg integration of the optimal estimation equations -- which is
q equivalent to a simple front-end counter and interruptable clock
" followed by a slow back-end processor -- performs asymptotically

as well as the optimal.

*

2. We have also studied the standard front—-end/back-end algorithms
for this problem. Our exteansive simulations provide extremely
convincing evidence supporting our conjectures concerning agymp-
totic optimality and the relationships among the orders of mag-
nitude of time scales, slow-to—-fast couplings, and front-end
batch lengths.
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The results presented in this report not only are of significance in

PR TR T R

¥
EQ their own right, but they also provide clear direction for further work: in
IV 4 the theoretical verification of the numerous conjectures developed through
.1"
) DYy
: - our simulations; in developing higher-—order approximations that indicate the
-. ‘
,: ﬁg value of slightly more complex estimators; and in extending these ideas to
continuous-state nonlinear systems.
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APPENDIX A

SOLUTION OF THE WAVE EQUATION

Pressure in a three-dimensional homogeneous fluid with sound speed c

satisfies the wave equation

2
%M g2, = f(x,t) (A-1)

1.,
c? 3 t2
where f(x,t) is the source field. We are interested in the case of a moving

point source at xp(t) for which f(x,t) is given by
£(x,t) = 4n8(x - xp(t))eyr(t) (A-2)

where § is the three~-dimensional Dirac delta function and yp(t) is the source

signal. The solution of Eq. A-1l can be expressed in terms of Greens function

as an integral
|x-g|
filg,t - Py

u(x,t) = f dg . (A-3)
An-lx-gl

Substituting Eq. A-2 in Eq. A-3 gives

|x-¢| |x-¢]
8 E—XT t - c * YT t - c
de . (A-4)

|x-£|

u(x,t) = |

To integrate Eq. A-4 we need to change variables from £ to g defined by
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)
RS |x-¢] |
w c=g-xple-——]| . (a-5)
!.;'
N \ .
. Note that the Jacobian of the transformation is
Tt
oL 14 xr (x-¢)T
2 o —)=1, - — (A-6)
3¢ c |x-g]
i: - where the superscript T in Eq. A-6 denotes vector transposition and I3 denotes
) ::: the 3x3 {dentity matrix. The determinant of the Jacobian is needed to trans-
l Y
form variables in the integral and is given by
’ ~
. by .
Rk AL <X ,Xx-E>
& det{ —}=1- —— . (A-7)
tf .ﬁ g ceo|x-g|
%
ﬁ “a The integral in Eq. A-4 becomes
L
e
b , -1 |x-¢|
o {XT,X-6D y - c
;.;:. 11 - 8(g) dg (A-8)
BN :-: Ce l x—ﬁ' |X-El
IR

where £ in Eq. A-8 satisfies Eq. A-5. Thus, we get

»
o

=,
“

e
L)
s
w ::‘, . -1 |x-£]
e {X,x-£> y(; - c )
C u(x,t) =|1 - (A-9)
s A celx-g| |x-g]
» '-
‘ .
>
S
, i where £ is chosen to satisfy
e
| x-¢]
o~ O0=¢-xp{t - . (A-10)
-~ C

TAsscN @

::4 A-2
L <
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Letting

T = ’ (A-11)

e
iel

we see that

ct = |x—xp(t-1)| , (A-12)

—e
I

s~ |
}

Pod=|1-— 2, (4-13)

Y
0
.
"
1
vy

and finally

A

u(x,t) = —i;:il (1-7v) . (A-14)
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: APPENDIX B
W« Lt

Jd
N N FILTERING EQUATIONS FOR PARTIALLY-OBSERVED
W' o
N FINITE-STATE CONTINUOUS-TIME MARKOV PROCESS
g L_
o B.l PROBLEM FORMULATION AND FILTER EQUATIONS
~N
: f-:* Suppose that x(t) is a finite-state continuous—-time Markov process and
d '-.:

define the observation process y(t) by

)
e
;.' y(t) =h(x(t)) . (B-1)
S
i
x We will derive a stochastic differential equation for the conditional proba-
4o bility me(£) defined by
2 "’
jg ’
- me(E) = Prix(t)=g|y(1),0>t>t} . (B-2)

a'r

B,
' Let A(£|g') denote the transition rate from ¢' to £. That is,

&Z

L) -,
0.‘ ‘.
b Prix(t+a)=£|x(t)=g'} = &ggr + A-A(E|E") +0(8) , (B-3)
AR

s where A>0, 655' is the Kronecker delta function, and o(A) is an error term
1 LS
) ;*. that tends to O faster than A as A tends to 0.

y A

(4

] Assume that x(t) is a version of the Markov process which has right
; o

. continuous sample paths and which has, at most, a finite number of discon-

tinuities in any finite time interval. Let J. denote the counting process

. ’ “' Al “J' l..".-
P

associated with y. That is, J. is the number of discontinuities of y in the

o
: \; interval [O,t].
& T
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2 B-1
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We will show that w.(g) satisfies the stochastic differential equation

o

]

o
t t

ﬁ ne(E) = mo(g) + [ Fg ds + [ Gg dJg (B-4)
0 0

.2

:, where the first integral is Lebesgue and the second is Stieltjes. If vy, 1<k,

are the transition times of the y process (and therefore also of the counting

process J), then the Stieljes integral in this case is simply

t
[GsdIg = L Gg - (B-5)
33 0 Tk<t
B
r The integrands F, and Gy are defined as follows.
r‘-
&
) Fe = Sn(e)y(e)*[Z MEIENDT(E") = me(E)oZ A(y(e)|g" )me(E")]  (B-6)
',‘. E' E'
v
where
B Ayoleh = aElgh (8-7)
h(g")=y(t)

£ ACElg ) me-(EY)

! Gt = Sn(g)y(t) ° = = me-(€) (B-8)

o A(y(e)]g" ) me-(E")
E'
N
:3 where
Te-(E) = lim ng(g) . (B-9)
e stt
:; A special case of this general result is when x(t) has two components
v
&
o x(t) = (xp(t),x2(t)) (B-10)
.
G
B-2
=
b
2
e e I e e e e e AN LR T
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L and
s
- y(t) = h(x(t)) = x(t) - (B-11)
. In this case the stochastic differentiai equation for
]
]
e ne(€1) = Prixy(t)=g|y(1),0<<t} (B-12)
!E is the same as (B-4) with F and G given by
o Fe = £ A(6),y(0)]g],y(0))m (g]) = mo(g) « Ay g, y(0))m (5))  (B-13)
&~ El 1
N
) £ (g ,y(e)]E],y(e=))m _(€])
N 3
> Ge = - me-(E1) (B-14)
£ A(y(©)] €], y(e=))m (&)
‘- £
. 1

. B.2 OUTLINE OF PROOF OF FILTERING EQUATIONS

A direct proof of these results depends on showing that (1) n¢(£) has

E§ a derivative given by F¢ at each time t at which J. does not jump and that
.

(2) at jump times t, w (£) satisfies
- ne(E) = Gy + me(E) - (B~15)
‘-
I_\
i For jump times t, Eq. B-15 follows directly from Bayes rule for a finite-state
:p Markov chain. We will sketch how to prove (l) in the rest of this section.
!
. .

Assume that t>s and define Ag ¢ as
o
3!
1 As’t = 1 if Jt—JS = 0

- (B-16)
.:‘ =0 if Jt_JS > 1 . ‘
RS
) |
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Define ¢g as a function of sample paths of y as

¢s(y)(t) = y(1) for 1<t

(B-17)

]

y(t) for ot .

Suppose that f is Y, measurable (Yt = c{y(r),0<r<t}). Then f«¢g is Yg mea-
surable and

fehg,t = (Fegg)ehs,t - (B-18)
Therefore, letting f = w¢(g), we get
Te(E)As, & = (me(E)dg)eAg ¢ (B~19)
which implies that "t(E)'As,t is Yg V o{AS’t} measurable. Thus,

Te(E)-Ag,t = E{ne(£)|Ys,Aq, ¢t} As, ¢
(B~20)

Pr{x(t)=¢|Ys,Ag t}+As,¢ -

Note that
Pr{x(t)=g,hg, t=1|¥s}
Pr{x(t)=g|¥g,aq ¢=1} = (B-21)
Pr{Ag, c=1|Ys}
where
Pr{x(t)=g,Ag ¢=1|Y¥g} = Pri{x(t)=g,As, ¢=1|x(s)=¢'}eng(g") (B~22)
E'

and

Pr{AS:t|ys} = I Pr{Ag, ¢=1{x(s)=g'}eng(£’) . (B~-23)

E'

Let Bg t denote the event that there is more than one jump of x in the inter-
val (s,t], and let Bg ¢ be the complementary event that there is, at most, one
]

one jump in (s,t]. Then we have the relationships

B-4
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v

- 5 Pr{x(t)=g,BS [x(s)=¢'}

0k h(g)h(E") St (B-20)
: < Pr{x(t)=g,As,¢=1|x(s)=g"}
) i and

'\.:I . Sh(g)h(g") Prix(t)=g|x(s)=¢"} (
- B-25)
5 > Prix(t)=g,Ag ¢=1|x(s)=¢"}

“" g'_“. It follows from Eq. B-24 and B-25 that

2

¥ .

5 |8h(ean(e") Br{x(E)=g]x(s)=E"} = Prix(t)=g,As,¢=1|x(s)=¢"}| (B-26)
. - < Pr{Bg ¢|x(s)=¢'} .

.-.. :_x.

;. Note that

3 -

1 |

#! ti! Pr{Bs,tlx(s)=§'} = o(t-s) . (B-27)
3

P, _‘j Putting Eqs. B-27 and B-26 together with Eq. B-3 gives

.

] E Pr{x(t)=,Aq,t=1|x(s)=E'} = Sn(g)n(g')*[Sgg' + (£-s)+A(g[E")]

i (B-28)
.’" + o(t-s) .

5

i * Using Eq. B-28, we can derive the approximations

‘ N Pr{x(t)=[~;,As,t=1|Ys} = Sn(g)y(s)*[ws(8) (5-29)
S B~
W + z AE|E ) emg(E')+(t-8)] + o(t-s)

N -~ h(g')=y(s)

. - and

. PriAg,¢=1]Yg} = 1 + ) I OAME"[E") emg(E") +(t-s)

L h(g")=h(£")=y(s) (B-30)
[} ~n

e + o(t-s)

e

, From Eqs. B-21, B-29, and B-30, we get

-

W B-5
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e
§ oy Pr{x(t)=g|Ys,Aq,¢=1}
Suge

,.
_-‘:'. = Sh(g)y(s) * [ms(8) + ) AME|E ) eug(E') «(t-s) (B-31)
o 0 h(g")=y(s)
“ - ) b A(g"lE')-ns(g')-ns(g)-(t—s)] + o(t=-s)

RN h(g")=h(g")=y(s)

; '\.

! L' Note that wg(g) = O unless h({) = y(s). Thus,

al'| 0,
S Sh(g)y(s)*Ts(E) = 75(E) (8-32)
SN

S

and Eq. B-21 can be expressed

SR
oo Pr{x(t)=£|Ys,Aq, =1}

NN

o = ms(E) + Sn(e)y(s) * [ I AME|ET) 75 (E") «(E-8) (B-33)
oL h(g£")=y(s)
,;? i - b L A(E'|£')'ws(§')°ns(5)-(t-s)] + o(t-s) .

& _ h(£")=h(g"')=y(s)
‘.,. b From Eq. B-20,

% v
S me(€) - ms(E) = [Pr{x(t)=¢|¥s,As,t=1} - wg(E)]-Ag,¢

. (B-34)
. L + [7e(8) = wg(E)]+(1 - Ag ¢)

' ~

v,

.~ and it follows from Eq. B-33 and the definition of Fg that

-~ e (g) — mg(E) = Fge(t-s) + o(t-s)
T' (B-35)

+ [ne(€) - ms(E)]+(1 =~ Ag,e) -

%
\u
Y
h ~
T
4
¥
'\

,l
’l
A, o
NS
AGHR Finally note that because y is right coatinuous,
@
o ,
i.:. S' 1-As’t
ol lim =0 (B-36)
0 tvs t-s
'
T
. ] -
4 s
h‘." }'..
LA
e >
S
,'c'. .4
&
»
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is true for all s. If t is not a discontinuity of y, then it is also true"
that
1“As,t:

lim—" =0 . (B-37)
S+t t-s

Note that n¢, mg, and Fg are uniformly bounded. Using this fact together with
Eqs. B~36 and B-37, it follows that Eq. B-34 implies wy is continuous at t if
t is not a discontinuity of y. Consequently, F, is also continuous at such
times t, so that
lim Fg = F¢ (B-38)
s>t
in Eq. B-34. It follows that wy is continuously differentiable at t with

derivative

"t(E) - Ws(E)
lim = Ft . (3-39)
s+t t-s

B.3 EXAMPLE
As example, consider the four-state Markov process with state space

{0,1}X{0,1} and transition rates given by (see Fig. B-1):

2(0,1|0,0) = a, A(0,0]0,1) = «
A(1,0(0,0) = 8, 1(0,0{1,0) = g'
(B-40)
A(1,1]1,0) = «, A(1,0]1,1) = af
A(1,1(0,1) =y, A(0,1|1,1) = ¥’
and
2(0,0[0,0) = —(a+B)
A(1,0]1,0) = —(a+B")
(B-41)
A(L,1]1,1) = —(a'+y")
A(O,llO,l) = —=(a'+y) .
B-7
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NI The X(A|£{,y') are given by
;-.‘\ o
) N
N A(110,0) = A(1]1,0) = «
Ay
.! A(0]0,0) = A(0|1,0) = —a
b (B-42)
o) A(0]|0,1) = A(0|L,1) = a'
_\i R
o A(1]0,1) = A(1|1,1) = -a'
L™
w L
;x; o In this example, n¢(£1) satisfies a linear differential equation with coeffi-
40 '
2R
\y
&3 - cients that switch randomly with y(t). That is,
b
me(0) = 8' ~ (B + B")ne(0) when y(r) =0 (B-43)
- R
SAEERY
,{E by and
}"- .
"W r Te(0) = y' = (y + y")1e(0) when y(t) =1 . (B-44)

X

Let 6g and 87 denote the equilibrium points of the individual differential

NN
SRR [ e
1

S equations (Eqs. B-43 and B-44), namely

olﬁ

- L}
« L
v f 8g = __B__'. (B-45)
50 B+ B

5

xXy -

PN

A RS '

- 81 = v ¥7 - (B-46)

During an interval of time (ty,Ty+1] when y(t) = i, the probability =y(i)

w.‘j.';.z §(_ ¥

e

o

l\ )

. approaches 84 exponentially. If 6g # 61, then w¢(0) eventually becomes

“~

trapped between g and 6] and oscillates randomly as shown in Fig. B-2. 1If
8g = 61, then n¢(0) approaches 64 in the limit. If B, B', Yy, Y' are very

large compared to a, a', then the oscillations approach the limit

80 [l-y(t)] + 81-y(t) . (B-47)

B-8
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' Figure B-2. Sample Path Behavior of w.(0)
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B.4 REGULAR MEASUREMENT MODEL

Suppose that xj(t) is itself a Markov process and xp(t) is a process that
depends on xj(t) in such a way that x(t) = (xl(t),xz(t)) is a Markov process.
Furthermore, suppose that for almost all sample paths of x(t), x;(t) and xp(t)
do not jump simultaneously. Then the transition rate A for the joint process
x has the following form

1) t
ME S8, E1,65)
(B-48)
= . + . t v
55255 A Cep)d 551gi A (E1585)
where XA} is the transition rate of xj, and Ay is a transition rate for a

process xp if gi is held constant, that is
\(EyE1585) > O Af £, # &) (B-49)

I MEylE],85) =0 (B-50)
&2

for each gi, gé. To see that Eq. B-48 is true note that if xl(t) and x2(t)

do not have simultaneous jumps, then A can be written in the form

MEp2E,lE].65)

(B-51)

=gy (e) 0 Sg g6 lEHE) -

Note that
0= ME,E,lE],E)

£1,62 el (B-52)

= Ia (g 160,85 *+ T a,(g,l6,6) -

€1 £2
B~10
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Define 51, ;é as

a (&, 1€1,€3) 31<€1|5i’55"Gsl,ei'glal(ﬁllﬁi'ié) , (B-53)

1

Then A can be written as

(g ,E,[E]4ED)

_ _ (B-55)
= . ' ! e [ ' .
Sg,6,031 (61 [61,6))  + 8g 178, (5160560
where
L aj(g |g],65) =0 . (B-56)
i
Summing Eq. B-55 over g3 gives
Me 1€]) = T ME)E, 61,8 = a (& ]E],65) - (B-57)
€2

Substituting Eq. B-57 in Eq. B-55 gives the desired expression (Eq. B-48).
Equation B-50 is just Eq. B-56, and Eq. B-49 follows from Eq. B-48. Note
that Eq. B-48 can also be expressed by saying that the infinitesimal generator

A of x given by

€1, '
has the form
(AE)CEL,E2) = ALE(<,E2)(E1) + A2(E1)E(CEL, *)(E2) (B-59)
B-11

\J
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where A] is the infinitesimal generator corresponding to A1 and A2(£1) is the

infinitesimal generator corresponding to A2(E£y1,|&1,°)-

We will call Eq. B-48 the regular measurement model. It is the discrete-

state version of the following measurement model typically used for diffusion

processes:

dx; = f(x1)dt + dw (B-60)
dxy = h(xy,xp)dt + dv . (B-61)

Note that the regular measurement model is only a special case of the
partially-observed Markov process formulated in Eq. B-1l. 1In some cases, it
will be necessary to consider the more general model (e.g., the limit of a
parameterized family of regular models need not be regular).

The finite-state filtering equation for the special measurement model
(Eq. B-48) is given by

Fo = I 4 (EepDme(e]) + 2y (y(e)]g ,y(e))m (&)
t1 (B-62)

- nel81) ¢ I Az(Y(t)IE{,Y(t))wt(Ei) .
3

A (y(e)|g1,y(t=) Jme-(£1)
Gy = - me=(£]) - (B-63)
£ A (y(t)|g],y(e=))m _(&])
3

We are particularly interested in singular-perturbation problems where
1 .
the observation process y = x9 is speeded up by a factor of — This gives
ME HE,|E]HE))
(B-64)

= ' _L_. ‘e ' '
= S, es (g lED)  + v B e (B lEE) -

B-12
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The singularly perturbed filtering equations are

1
Fe = 2 A (e)|eDn (e1) + < L{ye)|g,,y(e))n (g,)
t £ 1'~1 177t 1 € 2 1 =1 (B-65)

- _%_ SRR E'Az(y(t)lei,y(t))wt(ai) .
1

Xz(Y(t)|£1,Y(t'))ﬂt—(€1)
G = - me-(E]) - (B-66)

L A (y(e)|g],y(e=))m _C(g])
3

B.5 UNNORMALIZED FILTERING EQUATIONS

In nonlinear filtering for diffusion processes, Zakai's equation for
an unnormalized conditional density is linear in the density and easier to
analyze than the nonlinear equation for the conditional density itself.
There is an analogous equation for an unnormalized conditional probability
distribution in the finite-state continuous-time filtering problem. Consider
the general problem formulated in Eq. B-1. Let qy(E) be the solution of the

following stochastic differential equation.

dqe(€) = [Sn(e)y(e) = T ME|E")qe(g")] dt
El

(B-67)
+ [Sh(g)y(t) * T ME[E")Qe-(£") - qe-(£)]+dJe .
E'
Define Et to be the normalization factor
qe = T qe(E) - (B-68)

£

Then the conditional density mn¢(g) is

B-13

Q)
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<

w qe(€)
:' .'). ﬂt(g) = — . (8-69)
Y )
:“ qc
..'.
W . It is not hard to show that Eq. B-69 is true for all t provided that it is
'
v
\ .: true initially at t=0. At a jump time t = Ty
) ~
N
qe(E) = Sn(e)y(r) * I ME[E)qe-(E") (B-70)
1% \J
o &
Gy
J -
X 6:: so that if Eq. B-69 is true for t<{tg, it is clearly true at 1) (that is, Eq.
B-70 preserves the relation (Eq. B-69) through the jump). In between jump
:': ‘- times, 1k < t < Tk+1, qt(E) and qr satisfy the ordinary differential equations
~
vy .
v N at(€) = 8h(g)y(r) * L MeleM)ae(g") (B-71)
S '
L g
2.
< and
v’.
e =
¥ qr = & A(y(e)|g")ae(E") - (B-72)
B3 . T
!.. a E
':: - It follows that the quotient qp(£)/qp satisfies the same equation as w¢(£) in
‘n: '
_\: between jump times, namely
bt

%
o

ne(E) = Sn(g)y(t) * [T MEIEDT(EN
E'

(B-73)

S . .

: w - me(E) o L A(y(E) e )me(EDY] .
K £

. By

A

S Thus, if Eq. B-69 is true at t = 71, it will remain true throughout the
<

)

_":: e interval 1ty < t < TR4]-
TN

‘ = For the measurement model given by Eq. B-11, the unnormalized distribu-
S

>»ooo- tion satisfies the equation
R s
L
N3
L .-
a "{.f

1+
h B~14
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LI _
S da (£1) = [I A(g),y(e)|g],y(e))a (£])]-de
S 51 (B-74)
¥, X [ - t - . .
. . + 12 Mg,y fe]y(e=))a _(g]) = q,_(g))]-dJy
A &
AL
a4
.:_ For the regular measurement model, the unnormalized distribution satisfies
~‘l
!' the equation
- ] S :
- da, (g1) = [ A (g leDa (6]) + 2y (y(e)]g ,y(e))a, (€)) ] dt
> &1 (B-75)
) - + [A(y(e) e1,y(t=) )qe-(€1) - qe-(&1) ]+dJ¢ -
ﬂ-., '—-
L
N
::,,a For the singularly-perturbed problem we have two choices: either to use the
Y
Y ]
A ;. unnormalized equation (Eq. B-75) obtained by replacing A with % Ag or to
"_.-: . use a somewhat different version derived directly from Eqs. B-65 and B-66
":_:: : in the same way as Eq. B-67 was derived. Note that there are many possible
v "n unnormalized distributions, and no one choice need be uniquely the best. We
‘ present the different version because it appears to give better scaling in
-..'
‘;: the jump term.
W
) ] ' ! L] .
3 [ (2 41D+ = a0 e y(0)ae) ) e
y 1 (B-76)
) J T
o + [A2(y() e, y(t=) )ae-(€]) - qe-(&1) ]dIe .
)
(] ~
DA Note that some care needs to be taken in analyzing the asymptotic behavior of
, n% by analyzing an unnormalized distribution such as q; in Eq. B-76. If qy
;;.; ’ has leading order magnitude y(e), then we need to analyze q; to higher order,
- @
namely o{y(e)), in order to say something useful about the asymptotics of =Et.
A " y t
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APPENDIX C

DECISION PROBABILITIES FOR THE HYPOTHESIS TEST OF EQS. 6-57 AND 6-58

We are concerned here with analyzing the performance of the decision rule
specified by Eqs. 6-57 and 6-58. For simplicity we drop the subscript k and
we assume that x(0) = 1 (analogous expressions can be developed if x(0) = 0).
Taking logarithms of Eqs. 6-57 and 6-58 and simplifying, we see that an equiv-

alent form for this decision rule is for K even

mk=R
1 >
CL R+—C K Cq, (C-1la)
2 <
mpe = L
while for K odd it is
o = R
1 >
Cp R+ —E_ C2(K-1) + C3 Cy4 (C-1b)
<
mp = L
where
ag(e) Bg(€)
C1 = (B-a) g(e) , Co = log ||l + 1+
A1 A2
(c-2)
ag(e)
C3 = log + » C4 = Bg(e) T(e)

A1
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The key to the performance of Eq. C~1 is then the joint distribution for
R and K under each hypothesis (i.e., p(t) on the left or p(t) on the right).

For the case of p(t) on the left

p(R, K=0) = e M) s (ro1(e))
p(R, K=1) =2 o(A2-ADR A2 T(e)
p(R, K=2) = (AjR)Ay el127ADR A2 T(e)

(c-3)

M oy (M-1)
(A1R)  [x2(T(e)=-R)] \z o(A27ADR -2 T(e)

M! M~-1)!,

p(R, K=2M-1)

(M-1)
A

)™ [A2(T(e)-R) ]
M! (M-1)!

W

p(R, K=2M) 1 L(A27ADR ~2g T(e)

where the last two expressions for for M= 2,3,... .

To illustrate the nature of the computations, suppose that C;, C2 > O.

Then
o C4-CoM o C4—C3-CoM
¢L(e) = ) Pr (R {—— , K = zn)) + ) Pr (R { ———— , K = 2M+1
M=0 G M=0 C1
Ni(e) T(e) N2(e) y1(e)
= ) p(R,2M)dR + Y { p(R,2M)dR

M=0 ¢ M=N1(e)+l o
N3(e) T(e) N4(e) v2(¢€)

+ ¥ p(R,2M+1)dR + Y / p(R,2M+1)dR
M=0 ¢ M=N3(e)+l ¢

(c-4)
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where

W C4-Cy T(e) Cy
Ni(e) _— » No(e)

!I Co C2

—

B C4-C3-Cy T(e) [54—C3

(C-5)

P [\'3(5) ’ N(‘(C)
- CZ

%)

F! C4—CoM C4~Cq3-CoM

vi(e) ——Cl—-— » Y2(€) o
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